Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Przepływ plazmy w pobliżu powierzchni wyjaśnia plamy słoneczne i inne zjawiska
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na łamach Physical Review Research ukazał się artykuł, którego autorzy informują o skonstruowaniu urządzenia generującego energię elektryczną z... ruchu obrotowego Ziemi. Christopher F. Chyba (Princeton University), Kevin P. Hand (Jet Propulsion Laboratory) oraz Thomas H. Chyba (Spectral Sensor Solutions) postanowili przetestować hipotezę, zgodnie z którą energię elektryczną można generować z ruchu obrotowego Ziemi za pomocą specjalnego urządzenia wchodzącego w interakcje z ziemskim polem magnetycznym.
W 2016 roku Christopher Chyba i Kevin Hand opublikowali na łamach Physical Review Applied artykuł, w którym rozważali możliwość użycia ruchu obrotowego Ziemi i jej pola magnetycznego do generowania energii elektrycznej. Artykuł został skrytykowany, gdyż obowiązując teorie wskazywały, że każde napięcie elektryczne wygenerowane w takiej sytuacji zostanie zniwelowane wskutek przemieszczenia się elektronów podczas tworzenia pola elektrycznego.
Naukowcy zaczęli więc szukać sposobów na uniknięcie niwelacji napięcia. Żeby sprawdzić swoje pomysły stworzyli urządzenie złożone z cylindra z ferrytu manganowo-cynkowego, który działał jak osłona magnetyczna. Cylinder umieścili na linii północ-południe pod kątem 57 stopni. W ten sposób był on zorientowany prostopadle do ruchu obrotowego planety i ziemskiego pola magnetycznego. Na obu końca cylindra umieścili elektrody. Pomiary wykazały, że w ten sposób wygenerowali napięcie elektryczne rzędu 18 mikrowoltów, którego nie byli w stanie przypisać do żadnego innego źródła, niż ruch obrotowy Ziemi.
Eksperyment odbywał się w ciemności, by uniknąć efektu fotoelektrycznego, uczeni wzięli pod uwagę napięcie, jakie mogło się pojawić w wyniku różnicy temperatur pomiędzy oboma końcami cylindra. Zauważyli też, że napięcie – zgodnie z przewidywaniami – nie pojawia się przy innych ustawiniach cylindra. Takie same wyniki uzyskano podczas badań w innej lokalizacji o podobnym środowisku geomagnetycznym.
Eksperyment nie został jeszcze powtórzony przez inne zespoły badawcze, które mogłyby sprawdzić, czy zmierzone napięcie nie jest wynikiem zjawiska, którego trzej naukowcy nie wzięli pod uwagę. Autorzy badań stwierdzają, że jeśli uzyskane przez nich wyniki zostaną potwierdzone, warto będzie rozpocząć prace nad zwiększeniem uzyskiwanego napięcia do bardziej użytecznego poziomu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Instytucie Inteligentnych Systemów im. Maxa Plancka naukowcy stworzyli miniaturowe roboty – pokryli jednokomórkowe glony materiałem magnetycznym. Następnie sprawdzili, czy są one w stanie poruszać się w wąskich przestrzeniach i w płynach o takiej lepkości, jak płyny w ludzkim organizmie. Wyniki badań opublikowali zaś w piśmie Matter.
Niewielkie, 10-mikrometrowe glony, są świetnymi pływakami. Poruszają się za pomocą dwóch wici z przodu. Naukowcy z Niemiec postanowili sprawdzić, czy miniaturowe rozmiary i umiejętności pływania można będzie wykorzystać. Pokryli więc glony naturalnym polimerem chitosanem wymieszanym z magnetycznymi nanocząstkami. Nie wiedzieli jednak, czy po takich zabiegach glony nadal będą zdolne do pływania.
Okazało się, że dodatkowe obciążenie w niewielkim stopniu wpłynęło na ruchy glonów. Nadal potrafiły się poruszać z imponująca prędkością 115 mikrometrów na sekundę. Zatem w ciągu jednej sekundy przebywały długość równą niemal 12 długościom swojego ciała. Człowiek nie może się z nimi równać. Najlepsi pływacy wśród H. sapiens w ciągu sekundy przebywają odległość nieco większą niż 1 długość ich ciała.
Po co jednak komu glony pokryte magnetycznymi nanocząstkami? Autorzy badań chcą wykorzystać je do dostarczania leków w wyznaczone miejsce w organizmie. Magnetyczne nanocząstki pozwolą sterować ruchem alg.
Podczas badań nakładanie powłoki na glony trwało kilka minut, a skuteczność metody wynosiła 90%. Następnie algi testowano pod kątem zdolności pływania w wodzie w ciasnym labiryncie. Ruchami glonów kierowano za pomocą magnesów. Gdy testy wypadły pomyślnie, zwiększono lepkość płynu i znowu wpuszczono doń glony. Chcieliśmy sprawdzić, jak nasi pływacy sprawują się w płynie o gęstości śluzu. Odkryliśmy, że lepkość wpływa na ich zdolność poruszania się. Im była większa, tym wolniej się poruszały, zmieniał się też ich sposób ruchu. Po przyłożeniu pola magnetycznego, glony zaczęły drgać, pływając zygzakiem. To pokazuje, jak ważne dla optymalizacji pracy mikrorobotów jest odpowiednie dobranie pola magnetycznego do lepkości środowiska, mówi doktorantka Saadet Baltaci.
Chcemy wykorzystać mikroroboty w złożonych ciasnych środowiskach, takich jak ludzkie tkanki. Nasze badania dają możliwość zastosowania ich do dostarczania leków, zapewniając biokompatybilne rozwiązanie o dużym potencjale rozwojowym w przyszłości, stwierdzają autorzy badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Przed dziewięcioma dniami, 12 lutego, tokamak WEST z francuskiego centrum badawczego Cadarache utrzymał plazmę przez 1337 sekund, bijąc w ten sposób niedawny chiński rekord 1066 sekund. Ostatecznym celem tego typu badań jest opracowanie metod długotrwałego utrzymania plazmy oraz stworzenie materiałów zdolnych wytrzymania niezwykle wysokich temperatur i dawek promieniowania.
Badacze z CEA (Komisja energii atomowej), do którego należy Cadarache zapowiadają, że w najbliższych miesiącach znacząco zwiększą zarówno czas utrzymania plazmy, jak i jej temperaturę. Podczas rekordowego eksperymentu plazma w tokamaku była grzana falami radiowymi z pojedynczej anteny o mocy 2 MW. Badacze postawili sobie ambitny cel. Chcą zwiększyć moc grzewczą do 10 MW, wciąż utrzymując plazmę przez ponad 1000 sekund. Jeśli im się uda, będzie to odpowiadało uzyskaniu mocy rzędu gigawatów w dużych reaktorach, takich jak ITER. A to z kolei pozwoli sprawdzić żywotność wolframowych elementów wystawionych na oddziaływanie plazmy w tak ekstremalnych warunkach. Francuscy eksperci wchodzą w skład wielu zespołów pracujących nad opanowaniem fuzji jądrowej. Można ich spotkać przy projektach JT-60SA w Japonii, EAST w Chinach, KSTAR w Korei Południowej oraz, oczywiście, ITER.
Badania prowadzone we wspomnianych tutaj urządzeniach maja na celu opanowanie fuzji jądrowej i zapewnienie nam w przyszłości niezbędnej energii. Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli wielką galaktykę radiową ze strumieniami plazmy rozciągającymi się na odległość 32-krotnie większą niż średnica Drogi Mlecznej. Kosmiczna megastruktura o średnicy 3,3 miliona lat świetlnych została odkryta przez międzynarodowy zespół astronomów korzystających z południowoafrykańskiego teleskopu MeerKAT. Autorzy badań mają nadzieję, że rzucą one nieco światła na pochodzenie i ewolucję olbrzymich struktur we wszechświecie.
Wielkie galaktyki radiowe (GRG) to duże struktury wystrzeliwujące w przestrzeń kosmiczną dżety plazmy na odległość milionów lat świetlnych. Strumienie te napędzane są przez supermasywne czarne dziury znajdujące się w centrum galaktyk. Jeszcze do niedawna sądzono, że GRG są dość rzadkie. Jednak nowa generacja radioteleskopów, takich jak MeerKAT, pokazała, jak mylne było to przekonanie. W ciągu ostatnich pięciu lat liczba znanych nam GRG dosłownie eksplodowała, dzięki nowym potężnym teleskopom jak MeerKAT, mówi główna autorka badań, studentka Uniwersytetu w Kapsztadzie Kathleen Charlton.
Nowo odkryta galaktyka została nazwana nieoficjalnie „Inkathazo”, co w językach zulu i xhosa znaczy „kłopoty”, gdyż naukowcy mieli problemy ze zrozumieniem procesów tam zachodzących. Nie ma ona takich samych charakterystyk jak wiele innych wielkich galaktyk radiowych. Na przykład dżety plazmy mają niezwykły kształt. Zamiast być proste, jeden z nich jest zagięty.
Inkathazo znajduje się w centrum gromady galaktyk, tymczasem zwykle GRG są izolowane. Gromada powinna przeszkadzać w powstaniu tak rozległych strumieni plazmy. To fascynujące i niespodziewane odkrycie. Znalezienie GRG w gromadzie każe zadać sobie pytania o wpływ interakcji w lokalnym środowisku na formowanie się i ewolucję GRG, dodaje współautor badań, doktor Kshitiji Thorat z Uniwersytetu w Pretorii.
Naukowcy wykorzystali MeerKAT do stworzenia jednej z najdokładniejszych map GRG. Ujawniły on złożoność dżetów plazmy wydobywających się z galaktyki. Okazało się na przykład, że niektóre elektrony niespodziewanie otrzymują duże dawki energii. Być może dzieje się tak, gdy strumień plazmy zderzy się z gorącym gazem w przestrzeniach pomiędzy galaktykami w gromadzie. Nowe odkrycie to wyzwanie dla obecnie obowiązujących modeli. Pokazuje ono, że nie rozumiemy wielu ze zjawisk fizycznych dotyczących plazmy w tak ekstremalnych środowiskach.
Co ciekawe, na niewielkim skrawku nieboskłonu, na którym odkryto Inkathazo, wcześniej znaleziono też dwie inne GRG. Sam fakt, że kierując MeerKAT na niewielki skrawek nieba znaleźliśmy tam w sumie 3 GRG sugeruje, że na południowym nieboskłonie znajduje się olbrzymia liczba nieodkrytych jeszcze wielkich galaktyk radiowych, stwierdza doktor Jacinta Delhaize z Uniwersytetu w Kapsztadzie.
MeerKAT niejednokrotnie dowiódł swoich olbrzymich możliwości, a trzeba pamiętać, że jest on zaledwie prekursorem SKA (Square Kilometre Array), zespołu teleskopów w Australii i RPA. SKA ma rozpocząć badania jeszcze przed końcem obecnej dekady.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.