Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Przepływ plazmy w pobliżu powierzchni wyjaśnia plamy słoneczne i inne zjawiska
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Problem grzania korony słonecznej pozostaje nierozwiązany od 80 lat. Z modeli obliczeniowych wynika, że temperatura we wnętrzu Słońca wynosi ponad 15 milionów stopni, jednak na jego widocznej powierzchni (fotosferze) spada do około 5500 stopni, by w koronie wzrosnąć do około 2 milionów stopni. I to właśnie ta olbrzymia różnica temperatur pomiędzy powierzchnią a koroną stanowi zagadkę. Jej rozwiązanie – przynajmniej częściowe – zaproponował międzynarodowy zespół naukowy z Polski, Chin, USA, Hiszpanii i Belgii. Zdaniem badaczy za podgrzanie części korony odpowiadają... chłodne obszary na powierzchni.
W danych z Goode Solar Telescope uczeni znaleźli intensywne fale energii pochodzące z dość chłodnych, ciemnych i silnie namagnetyzowanych regionów fotosfery. Takie ciemniejsze regiony mogą powstawać, gdy silne pole magnetyczne tłumi przewodzenie cieplne i zaburza transport energii z wnętrza naszej gwiazdy na jej powierzchnię. Naukowcy przyjrzeli się aktywności tych chłodnych miejsc, przede wszystkim zaś włóknom plazmy powstającym w umbrze, najciemniejszym miejscu plamy słonecznej. Włókna te to stożkowate struktury o wysokości 500–1000 kilometrów i szerokości około 100 km. Istnieją one przez 2-3 minuty i zwykle ponownie pojawiają się w tym samym najciemniejszym miejscu umbry, gdzie pola magnetyczne są najsilniejsze, wyjaśnia profesor Vasyl Yurchyshyn z New Jersey Institute of Technology (NJIT).
Te ciemne dynamiczne włóka obserwowane były od dawna, jednak jako pierwsi byliśmy w stanie wykryć ich oscylacje boczne, które są powodowane przez szybko poruszające się fale. Te ciągle obecne fale w silnie namagnetyzowanych włóknach transportują energię w górę i przyczyniają się do podgrzania górnych części atmosfery Słońca, dodaje Wenda Cao z NJIT. Z przeprowadzonych obliczeń wynika, że fale te przenoszą tysiące razy więcej energii niż ilość energii tracona w aktywnych regionach atmosfery. Rozprzestrzenianie się tej energii jest nawet o 4 rzędy wielkości większa niż ilość energii potrzebna do utrzymania temperatury korony słonecznej.
Wszędzie na Słońcu wykryto dotychczas różne rodzaje fal. Jednak zwykle niosą one ze sobą zbyt mało energii, by podgrzać koronę. Szybkie fale, które wykryliśmy w umbrze plam słonecznych to stałe i wydajne źródło energii, które może podgrzewać koronę nad plamami, wyjaśnia Yurchyszyn. Odkrycie to, jak mówią naukowcy, nie tylko zmienia nasz pogląd na umbrę plam, ale również jest ważnym krokiem w kierunku zrozumienia transportu energii i podgrzewania korony.
Jednak, jak sami zauważają, zagadka grzania korony słonecznej nie została rozwiązania. Przepływ energii pochodzącej z plam może odpowiadać tylko za podgrzanie pętli koronalnych, które biorą swoje początki z plam. Istnieją jednak inne, wolne od plam, regiony Słońca powiązane z gorącymi pętlami koronalnymi. I czekają one na swoje wyjaśnienie, dodaje Cao.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zauważyłam sygnał, którego nikt wcześniej nie odnotował, mówi Jackie Villadsen, astronom z Bucknell University. Uczona w czasie weekendu analizowała w domu dane z radioteleskopu Karl G. Jansky Very Large Array gdy wpadła na coś, czego wcześniej nie zauważono. Wraz z Sebastianem Pinedą z Uniwersytetu Kalifornijskiego w Boulder przystąpiła do dalszej analizy. I okazało się, że sygnał się powtarza.
Nadchodził on z gwiazdy YZ Ceti, położonej w odległości 12 lat świetlnych od Ziemi. Gwiazda posiada układ planetarny, a najbliższą jej planetą jest YZ Ceti b. Ma ona masę ok. 0,7 masy Ziemi, jej promień to 0,913 promienia Ziemi i okrąża gwiazdę macierzystą w ciągu zaledwie dwóch dni. Emisja sygnału ma miejsce w podobnej fazie obiegu planety, dlatego też Villadsen i Pineda proponują na łamach Nature Astronomy, że do emisji dochodzi w wyniku interakcji pomiędzy planetą a gwiazdą. A konkretnie w wyniku interakcji pomiędzy ich polami magnetycznymi. To zaś oznaczałoby, że skalista YZ Ceti b posiada pole magnetyczne, a to już ma olbrzymie znaczenie dla poszukiwania planet, na których może istnieć życie.
Nie wystarczy bowiem, że znajdziemy skalistą planetę podobną do Ziemi, która znajduje się w ekosferze swojej gwiazdy, czyli w takiej odległości, na której może istnieć woda w stanie ciekłym. Planeta powinna mieć też atmosferę, a do jej utrzymania i ochronienia przed negatywnym wpływem macierzystej gwiazdy niezbędne jest wystarczająco silne pole magnetyczne. Bez niego oddziaływanie gwiazdy obedrze planetę z atmosfery. Te badania nie tylko pokazują, że ta skalista planeta prawdopodobnie posiada pole magnetyczne, ale również opisują obiecującą metodą znalezienia większej liczby takich planet, mówi Joe Pesce z National Radio Astronomy Observatory.
Sygnał z pola magnetycznego planety, docierający do nas z odległości kilkunastu lat świetlnych, musi być bardzo silny. Już wcześniej naukowcy wykrywali pola magnetyczne pozasłonecznych olbrzymów wielkości Jowisza. Jednak wykrycie ich w przypadku niewielkich planet rozmiarów Ziemi jest trudne. Praca Villadsen i Pinedy to jednocześnie przepis na wyszukiwanie pól magnetycznych niewielkich planet. Okazuje się bowiem, że gdy taka planeta znajduje się bardzo blisko gwiazdy i posiada pole magnetyczne, to niejako „rzeźbi bruzdy” w polu magnetycznym gwiazdy. I powoduje, że gwiazda emituje jasne promieniowanie w zakresie radiowym.
Niewielki czerwony karzeł YZ Ceti i jego planeta YZ Ceti b to idealna para do tego typu badań. Planeta jest tak blisko karła, że obiega go w ciągu 2 dni. Dla porównania, obieg Merkurego wokół Słońca to 88 dni. Gdy plazma z YZ Ceti trafia na „magnetyczny pług” planety, dochodzi do jej interakcji z polem magnetycznym samej gwiazdy i wygenerowania sygnału radiowego, tak silnego, że można go zarejestrować na Ziemi. A siła tego sygnału pozwala nam zmierzyć siłę pola magnetycznego YZ Ceti b.
To dostarcza nam nowych informacji o środowisku wokół gwiazdy, czymś, co nazywamy pozasłoneczną pogodą kosmiczną, dodaje Pineda.
Jak wiemy z własnego doświadczenia, interakcja pomiędzy plazmą słoneczną i atmosferą Ziemi może doprowadzić do zakłóceń pracy satelitów a nawet urządzeń elektrycznych na samej Ziemi. Te same zjawiska odpowiadają za wspaniałe zorze polarne. Interakcja pomiędzy YZ Ceti b a jej gwiazdą również prowadzi do pojawienia się zorzy, z tą jednak różnicą, że jest to zorza na gwieździe. Tak naprawdę, to obserwujemy zorzę na gwieździe. To ta zarejestrowana emisja radiowa. Jeśli planeta ma atmosferę, to i na niej pojawia się zorza, mówi Pineda.
Rozwiązanie podane przez Villadsen i Pinedę jest najbardziej prawdopodobnym wyjaśnieniem zarejestrowanych sygnałów radiowych. Autorzy badań mówią jednak, że sprawa nie jest ostatecznie rozwiązana. Potrzeba jeszcze sporo pracy, by ostatecznie udowodnić, że ten sygnał radiowy jest powodowany przez planetę, mówi Villadsen. Obecnie uruchamianych jest i planowanych wiele nowych radioteleskopów. Gdy ostatecznie udowodnimy, że za sygnałem stoi pole magnetyczne planety, będziemy mogli bardziej systematycznie badać tego typu zjawiska. Jesteśmy na początku drogi, dodaje Pineda.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z National Ignition Facility (NIF) w Lawrence Livermore National Laboratory zauważyli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń. Prowadzone w NIF badania dadzą lepszy wgląd w działanie reaktorów fuzyjnych, w których reakcja inicjowana jest za pomocą potężnych impulsów laserowych.
Specjaliści z całego świata próbują odtworzyć reakcje fuzji jądrowej zachodzące na Słońcu. Ich opanowanie dałoby ludzkości niemal nieograniczone źródło czystej energii. W NIF wykorzystuje się zespół 192 laserów, za pomocą których kompresuje się kapsułki z trytem i deuterem, zapoczątkowując fuzję jądrową. To koncepcja znana jako ICF (Inertial Confinement Fusion – inercyjne uwięzienie plazmy) Przed kilkoma dniami na łamach Nature Physics opublikowano artykuł, z którego dowiadujemy się, że zmierzona energia neutronów – przynajmniej podczas najbardziej intensywnej fazy fuzji – jest wyższa niż spodziewana.
To oznacza, że jony biorące udział w fuzji mają większą energię. To coś czego się nie spodziewaliśmy i nie byliśmy w stanie przewidzieć na podstawie standardowych równań opisujących ICF, mówi fizyk Alastair Moore, główny autor artykułu.
Eksperci nie są pewni, co spowodowało obserwowane zjawisko, podkreślają jednak, że to jeden z najbardziej bezpośrednich pomiarów jonów biorących udział w fuzji. Pomiary oznaczają, że teoretycy będą musieli zmodyfikować teorie i wzory, którymi posługują się specjaliści z NIF. Jest tutaj też powód do optymizmu. Dzięki lepszym teoriom wyjaśniającym obserwowane zjawiska, być może uda się opracować metodę zainicjowania długotrwałej samopodtrzymującej się reakcji.
Zaobserwowanie niespodziewanego zachowania jonów było możliwe dzięki opracowaniu nowej technologii detektorów, nazwanej Cherenkov nToF. Dzięki niej niepewność odnośnie prędkości neutronów wynosi zaledwie 5 km/s czyli 1/10 000. Średnia energia neutronów uzyskiwana podczas reakcji w NIF oznacza, że poruszają się one z prędkością ponad 51 000 km/s.
Jednym z możliwych wyjaśnień zaobserwowanego zjawiska jest stwierdzenie, że jony deuteru i trytu nie są w równowadze. Potrzebujemy bardziej zaawansowanych symulacji, by to zrozumieć. Współpracujemy na tym polu z Los Alamos National Laboratory, Imperial College London i MIT, dodaje Moore.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badanie wydarzeń opisanych w Biblii nie jest łatwym zadaniem. Wymaga zarówno analizy starożytnych dokumentów, jak i znalezisk archeologicznych. A wyniki takich prac często są niepewne. Grupa naukowców z Uniwersytetu w Tel Awiwie i Uniwersytetu Hebrajskiego w Jerozolimie wykorzystała dane o ziemskim polu magnetycznym do zweryfikowania i ustalenia chronologii wydarzeń sprzed tysięcy lat. Uczeni skupili się na działaniach wojennych prowadzonych pomiędzy X a VI wiekiem przed Chrystusem, odtwarzając na potrzeby swoich badań zachowanie ziemskiego pola magnetycznego.
Zarówno z Biblii, jak i z innych bliskowschodnich tekstów, dowiadujemy się o kampaniach wojskowych prowadzonych na południu Lewantu przez Egipcjan, Aramejczyków, Asyryjczyków i Babilończyków. Dzięki badaniom archeologicznym znamy liczne warstwy ze śladami zniszczeń spowodowanych działaniami wojennymi. Niektóre z tych warstw udało się z dużą precyzją datować i powiązać je z wydarzeniami opisanymi w Biblii. Te warstwy posłużyły jako punkty odniesienia. Datowanie innych warstw budzi zaś spory.
Uczeni z Izraela przeprowadzili prace, których celem było uzgodnienie dat w 20 warstwach zniszczeń. Wykorzystali przy tym dane geomagnetyczne, a ich prace ułatwił fakt, że w tym czasie w badanym regionie dochodziło do licznych anomalii ziemskiego pola magnetycznego. Było ono nawet dwukrotnie bardziej intensywne od dzisiejszego i ulegało częstym zmianom. Takie krótkoterminowe zmiany ułatwiały zaś precyzję datowania.
Geofizycy, chcąc lepiej zrozumieć współczesne ziemskie pole magnetyczne, badają jego zmiany w czasie. Korzystają przy tym z materiałów archeologicznych zawierających minerały magnetyczne, które po podgrzaniu lub spaleniu utrwalają dane o polu magnetycznym w chwili pożaru.
Już w 2020 roku zrekonstruowali pole magnetyczne z 9 dnia miesiąca aw 586 roku p.n.e., kiedy to wojska Nabuchodonozora spaliły Pierwszą Świątynię. Teraz zrekonstruowali pole magnetyczne w 20 innych warstwach zniszczeń. Opierając się na podobieństwie bądź różnicy w intensywności i kierunku pola magnetycznego możemy albo potwierdzić, albo odrzucić hipotezę mówiącą, że konkretne miejsce zostało spalone podczas tych samych działań wojennych. Co więcej, stworzyliśmy krzywą zmian intensywności pola magnetycznego w czasie, którą można wykorzystać podobnie jak metodę datowania radiowęglowego, mówi Yav Vanknin z Instytutu Archeologii Uniwersytetu w Tel Awiwie.
Z Biblii dowiadujemy się, że Chazael, król Aramu, zdobył filistyńskie miasto Gat (2 Krl 12,18). Naukowcy zgadzają się co do tego, że wydarzenie to miało miejsce około 830 roku przed naszą erą. Dane pola magnetycznego z warstwy zniszczeń w Gat w wysokim stopniu zgadzają się z danymi z warstwy IV Tel Rehov, warstwy V Horvat Tevet i warstwy XIII Tel Zayit. To zaś sugeruje, że miejscowości te zostały zniszczone w tej samej aramejskiej kampanii wojskowej.
Jednocześnie udało się rozwiązać kontrowersję dotyczącą zniszczenia Tel Beth-Shean, ważnego miasta położonego 5 kilometrów od Tel Rehov. Prowadzący tam wykopaliska specjaliści wskazywali, że Beth-Shean zostało zniszczone przez faraona Szeszonka I (bibl. Szyszak) ok. 920 r. p.n.e. albo przez Chazaela pod koniec IX wieku p.n.e. Ostatnio zaczęli wskazywać na tę późniejszą datę. Jednak datowanie archeomagnetyczne Beth-Shean z 95% ufnością wskazuje, że do zniszczeń doszło przed 880 rokiem, a różnica między danymi z Gath, Rehov IV i Tevet V, a danymi z Beth-Shean wskazują, że pomiędzy zniszczeniami tych miejscowości upłynął jakiś czas.
Dane z Beth-Shean zgadzają się natomiast z danymi geomagnetycznymi warstwy VII Horvat Tevet i warstwy V Tel Rehov, gdzie w wyniku pożaru zniszczeniu ulegała unikatowa pasieka. Wcześniejsze datowanie radiowęglowe Horvat Tevet i Tel Rehov wskazuje, że do pożarów doszło tam pod koniec X lub na początku IX wieku przed Chrystusem. Zatem zniszczenia w Beth-Shean miały miejsce w tym samym czasie. To zaś uprawdopodabnia hipotezę, że miasta padły ofiarą wojsk Szoszenka I. O jego kampanii wspomina Biblia oraz relief z Karnaku, na którym Rehov i Beth-Shean są przedstawione jako jeńcy wojenni.
Ze źródeł biblijnych i asyryjskich wiemy, że w latach 733–732 p.n.e. król Asyrii Tiglat-Pileser III podbił północną część Królestwa Izraela. W czasie tej kampanii zniszczone zostały Bethsaida i Tel Kinnerot. Badania archeomagnetyczne potwierdziły, że do ich zniszczenia doszło w krótkim czasie. Z kolei w roku 701 p.n.e. inny władca Asyrii, Sennacheryb, podjął kolejną wyprawę. Biblia kilkukrotnie wspomina o zniszczonym wówczas Tel Lachish (warstwa III), co znajduje potwierdzenie w danych archeologicznych oraz asyryjskich reliefach. Według źródeł pisanych Asyryjczycy zniszczyli wówczas wiele innych miejscowości, jednak żadnego z nich dotychczas nie zidentyfikowano. Teraz uczeni z Tel Awiwu i Jerozolimy odkryli, że w tym samym czasie zniszczeniu uległy Tel Beersheba, Tel Zayit oraz Tell Beit Mirsim.
Gdy z Lewantu wycofali się Asyryjczycy, region ten kilkukrotnie był najeżdżany przez Babilończyków Nabuchodonozora II. Naukowcy sprzeczają się o datę zniszczenia filistyńskiego Ekron, ale zgadzają się, że miało ono miejsce podczas jednej z babilońskich kampanii pomiędzy rokiem 604 a 598 p.Chr. Ostatnio pojawiły się sugestie, że Ekron mogło zostać spalone w pamiętym 586 roku p.n.e. Wtedy to Babilończycy zniszczyli Jerozolimę i Pierwszą Świątynie, a wraz z nimi zakończyła się historia Królestwa Judy. Najnowsze badania pokazały jednak, ze dane pola magnetycznego ze zniszczonej Jerozolimy nie są zgodne z danymi z Ekron. Dane z Ekron zgadzają się zaś z danymi z Batash, a oba zestawy wskazują, że oba miasta spłonęły około 600 roku, co uprawdopodabnia początkowe datowanie mówiące o roku 604 p.n.e.
W tym kontekście interesująco wyglądają dane archeomagnetyczne z położonego na południe od Jerozolimy Tel Malhata. Z danych wynika, że miejscowość ta została zniszczona później od Jerozolimy. To zaś wskazuje, że armia Nabuchodonozora II była skoncentrowana na stolicy i nie interesował jej podbój innych terenów. Upadek Jerozolimy oznaczał koniec Królestwa Judy, a jego wschodnie i południowe peryferia zaczęły podupadać, w końcu zaś zostały zniszczone prawdopodobnie przed Edomitów lub innych nomadów. O rozpadającym się Królestwie Judy i zagrażającym mu Edomitach dowiadujemy się z Biblii i kilku ostrakonów.
Izraelscy badacze podkreślają, że ich krzywa intensywności pola magnetycznego może być bardzo użytecznym narzędziem do określania chronologii, szczególnie tam, gdzie datowanie radiowęglowe napotyka na ograniczenia. Aramejskie, asyryjskie i babilońskie kampanie wojenne miały miejsce w czasie, gdy pole magnetyczne miało wysoką intensywność i są dobrze oddzielone przez minima tego pola. To zaś może być użyteczne podczas datowania ważnego okresu w historii Lewantu, stwierdzają naukowcy.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.