Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Hałas z lotniska zwiększa ciśnienie

Recommended Posts

Hałas dochodzący z lotniska zwiększa ciśnienie krwi podczas snu. Mieszkanie w pobliżu tego typu obiektów jest więc zdecydowanie niezdrowe i tym razem nie chodzi tu wyłącznie o higienę narządu słuchu.

Im większe natężenie dźwięków, tym większy skok ciśnienia się odnotowuje. Dr Lars Jarup ostrzega w związku z tym przed chorobami serca. Wysokie ciśnienie krwi może prowadzić do udaru, zawału, niewydolności serca i nerek.

Studium naukowców z Imperial College London zostało sfinansowane przez Komisję Europejską (European Heart Journal).

Do tej pory naukowcom udało się wykazać, że ludzie żyjący przez co najmniej 5 lat w pobliżu ruchliwych lotnisk i pod trasami lotów z większym prawdopodobieństwem zaczynają cierpieć na nadciśnienie niż osoby mieszkające w spokojnej okolicy.

Wcześniejsze badanie ok. 5000 ludzi unaoczniło, że zwiększenie natężenia nocnego hałasu lotniczego o 10 decybeli "windowało" szanse wystąpienia nadciśnienia u kobiet i mężczyzn o 14%.

Jarup podkreśla, że wyniki są bardzo istotne, zwłaszcza gdy weźmie się pod uwagę plany powiększania międzynarodowych lotnisk.

W najnowszym badaniu Brytyjczyków, które trwało 4 lata, zdalnie mierzono ciśnienie 140 ochotników, śpiących we własnych domach w pobliżu lotniska Heathrow. Czynność tę powtarzano co 15 minut. Nagrywano też wszystkie dźwięki, by stwierdzić, które z nich miały największy wpływ na ciśnienie. Wzięto pod uwagę nie tylko pomruk i gwizdy samolotów, ale także codzienne hałasy, takie jak chrapanie partnera czy ruch uliczny. Okazało się, że gdy natężenie dźwięku przekraczało 35 decybeli, następował wzrost ciśnienia skurczowego o 6,2 mm słupa rtęci i rozkurczowego o 7,4 mm.

Wskazania ciśnieniomierza rosły bez względu na to, czy delikwenci budzili się, czy nadal spali. Decydującym czynnikiem było natężenie dźwięku, a nie jego źródło, ale samoloty zdecydowanie wiodły tu prym.

Share this post


Link to post
Share on other sites
Okazało się, że gdy natężenie dźwięku przekraczało 35 decybeli, następował wzrost ciśnienia skurczowego o 6,2 mm słupa rtęci i rozkurczowego o 7,4 mm.

 

Dlatego w nowych budynkach wszelkiego rodzaju wentylacje mechaniczne powinny być na noc wyłączane, zdala od lini tramwajowych i kolejowych, pasów podejść lotniczych, ruchliwych ulic jednym słowem na sacharze. :)

Share this post


Link to post
Share on other sites

Heh, klimatyzacja faktycznie potrafi wyczyniać niesamowite rzeczy z człowiekiem. Nie chodzi o hałas, ale o emisję infradźwięków. Mamy jeden gabinet w szpitalu, w którym zamontowano kanały wentylacyjne o przekroju kwadratu zamiast owalnych - sam byłem już świadkiem co najmniej kilku omdleń studentów po paru minutach przebywania tam. Niesamowite wrażenie, jak się na to patrzy. Sami lekarze dopiero po ładnych paru miesiącach doszli do tego, co się tam dzieje.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Nowe studium biologów z University of St Andrews pokazuje, że podobnie jak ludzie, ssaki morskie cierpią na chorobę dekompresyjną.
      Dotąd nie było wśród specjalistów zgody w kwestii, czy walenie mogą cierpieć na chorobę dekompresyjną i ewentualnie na ile jest ona dla nich groźna, jednak w swoim najnowszym raporcie Szkoci zademonstrowali dowody na tworzenie się pęcherzyków azotu w tkankach i płynach ustrojowych leżących na plaży waleni oraz fok. Problemem jest nadmierny hałas, np. powodowany przez sonary wojskowe, ponieważ może wywoływać u ssaków morskich dezorientację, zaburzając działanie naturalnych mechanizmów obronnych.
      Niestety, nie istnieje jeszcze technologia, która pozwalałaby zmierzyć, co dzieje się w kategoriach fizjologicznych w organizmie wolno żyjącego walenia, schodzącego na głębokość ponad 1000 metrów. Przegląd ostatnich prac dot. fizjologii nurkowania morskich ssaków sprawił jednak, że doszliśmy do wniosku, że potencjalnie mogą one cierpieć na chorobę dekompresyjną w taki sam sposób jak ludzie - przekonuje dr Sascha Hooker.
      Analizy przeprowadzał zespół złożony z ekspertów w różnych dziedzinach. Znaleźli się w nim lekarze specjalizujący się w ludzkiej medycynie nurkowania, patolog weterynaryjny, a także naukowcy zajmujący się anatomią porównawczą, fizjologią, ekologią i zachowaniem.
      Hooker i współpracownicy z Woods Hole Oceanographic Institution (WHOI) skupili się na ostrych i przewlekłych przypadkach, śledząc tworzenie się pęcherzyków gazu w narządach wali dziobogłowych, które wypłynęły na plażę zmylone sonarami, w nerkach i okolicach wątroby delfinów masowo zbaczających na plaże oraz w tkankach delfinów i fok złapanych przez przypadek w sieci rybackie.
      Badając mechanizmy zapobiegające urazom związanym z nurkowaniem u ssaków morskich, Hooker i inni stwierdzili, że są one bardziej zmienne, niż się nam dotąd wydawało. Nasze odkrycia zmieniają sposób myślenia o sposobie radzenia sobie przez ssaki ze zmianami ciśnienia podczas nurkowania. Podręczniki mówią nam, że foki i walenie mogą tolerować duże zanurzenia i szybkie wynurzenia bez obciążenia azotem, które prowadzi do choroby dekompresyjnej. My sugerujemy, że nie jest tak w odniesieniu do wszystkich gatunków i że [niektóre] mogą uzależniać zarządzanie azotem od innych wymogów fizjologicznych, takich jak zapotrzebowanie na tlen lub potrzeba podtrzymania krążenia, by się rozgrzać. Martwimy się, że te naturalnie wyewoluowane mechanizmy mogą nie wytrzymać presji ze strony ludzi. Oczywiste zagrożenia, takie jak nagły hałas, wymuszają bowiem [natychmiastową] reakcję, zmieniając trajektorię nurkowania albo uruchamiając odpowiedź walcz lub uciekaj. Dochodzi wtedy do przeciążenia mechanizmów obronnych i rzadka w zwykłych warunkach choroba dekompresyjna staje się czymś realnym.
    • By KopalniaWiedzy.pl
      W głośnym otoczeniu alkohol wydaje się słodszy, co może upośledzać zdolność oceny ilości wypitego piwa, wina czy drinków - przekonują brytyjscy psycholodzy.
      Dr Lorenzo Stafford z Uniwersytetu w Portsmouth jako pierwszy zajął się wpływem muzyki na zmianę postrzeganego smaku alkoholu. Ponieważ ssaki mają wrodzone upodobanie do słodyczy, zyskaliśmy przekonujące wyjaśnienie, czemu spożywamy więcej alkoholu w hałaśliwym środowisku. Choć przeprowadzone badania nie były zakrojone na szerszą skalę, mogą mieć duże znaczenie [nie tylko dla ludzi], ale i dla barów, przemysłu alkoholowego oraz lokalnych władz.
      W eksperymencie Stafforda badani mieli ocenić zestaw drinków o różnej zawartości alkoholu pod kątem mocy, słodyczy i goryczki. Zastosowano wobec nich zakłócenia o 4 poziomach natężenia: od braku rozpraszaczy po głośną muzykę typu klubowego, której towarzyszyło odczytywanie wiadomości. Okazało się, że drinki uznawano za znacznie słodsze, kiedy ochotnicy słuchali wyłącznie muzyki.
      To interesujące spostrzeżenie, bo wydawałoby się, że muzyka w połączeniu z powtarzaniem raz po raz newsa zadziała bardziej rozpraszająco na ocenę smaku. Wydaje się jednak, że nasz podstawowy zmysł smaku jest w jakiś sposób odporny na bardzo zakłócające warunki, ale wpływa na niego sama muzyka.
      Warto przypomnieć, że wcześniejsze badania wykazały, że gdy gra głośna muzyka, ludzie piją więcej i szybciej.
    • By KopalniaWiedzy.pl
      Ze względu na silne właściwości toksyczne bezwonny, bezbarwny tlenek węgla kojarzy nam się, zwłaszcza w sezonie zimowym, z hasłem "cichy zabójca". Tymczasem okazuje się, że w niewielkich dawkach działa on jak narkotyk, pozwalając mieszkańcom miast radzić sobie ze stresem środowiskowym, np. wszechobecnym hałasem. Wygląda więc na to, że metropolie podtruwają nas CO ze spalin, sprawiając, że na lekkim haju czujemy się w nich szczęśliwsi (Environmental Monitoring and Assessment).
      Prof. Itzhak Schnell z Uniwersytetu w Tel Awiwie doszedł do tego zaskakującego wniosku, prowadząc badania w ramach projektu dotyczącego wpływu stresorów środowiskowych na ludzkie ciało. Naukowiec zaznacza, że większość ekologicznych stacji obserwacyjnych znajduje się poza centrami miast, co znacznie zaburza dane. By stwierdzić, jak żyje się w samym środku metropolii, zespół poprosił 36 zdrowych osób w wieku 20-40 lat o spędzenie 2 dni w Tel Awiwie. Ochotnicy udawali się do restauracji, hipermarketów czy na ruchliwe ulice. Chodzili na piechotę, korzystali z komunikacji miejskiej i własnych samochodów. W tym czasie monitorowano wpływ 4 stresorów środowiskowych: obciążenia termicznego (chłodu i gorąca), hałasu, stężenia tlenku węgla oraz zatłoczenia.
      Subiektywną ocenę stopnia stresogenności doświadczenia porównywano z odczytami czujników oraz tętnem. Okazało się, że hałas był dla ludzi najbardziej stresujący. Schnell zaznacza, że stężenie wdychanego CO okazało się dużo niższe niż przypuszczano (ok. 1-15 części na milion na każde pół godziny). Poza tym gaz wydawał się wpływać na uczestników studium jak narkotyk. Dzięki niemu hałas i tłok nie wydawały się już takie straszne.
      Choć poziom stresu narastał w ciągu dnia, CO działał uspokajająco. Co więcej, przedłużony kontakt z gazem nie powodował utrzymujących się efektów ubocznych.
    • By KopalniaWiedzy.pl
      Zdolność rozpoznawania wyrazów twarzy i emocji zawartych w tekście zależy od ciśnienia krwi. Prof. James A. McCubbin z Clemson University zauważył niedawno, że osoby z podwyższonym ciśnieniem cechuje obniżona zdolność rozpoznawania złości, strachu, smutku i radości zarówno na twarzach, jak i w tekście.
      To trochę przypomina życie w świecie e-maili bez emotikonów. Umieszczamy w liście śmiejące się buźki, by pokazać, że żartujemy. W innym razie niektórzy ludzie mogliby źle zrozumieć nasze poczucie humoru i wpaść w złość - tłumaczy obrazowo McCubbin.
      Wg Amerykanina, część osób przejawia tzw. "stłumienie emocjonalne", zwiększające prawdopodobieństwo niewłaściwego reagowania na złość i inne emocje krewnych, współpracowników czy przyjaciół. By nie pomylić np. złości z przekomarzaniem czy żartami, w złożonych sytuacjach społecznych trzeba polegać na wyrazach twarzy i słownych wskazówkach emocjonalnych.
      Jeśli masz stłumienie emocjonalne, możesz nie ufać innym, bo nie jesteś w stanie odczytać emocjonalnego znaczenia wyrazu ich twarzy ani komunikatów słownych. Możesz nawet podejmować nadmierne ryzyko, ponieważ nie potrafisz w pełni ocenić zagrożeń środowiskowych.
      McCubbin twierdzi, że stłumienie emocjonalne może prowadzić do nadciśnienia i podwyższenia ryzyka choroby niedokrwiennej serca. Tworzy się błędne koło, bo wyższe ciśnienie oznacza stłumienie emocjonalne, a ono utrudnia kontakty międzyludzkie, co w jeszcze większym stopniu podwyższa ciśnienie.
      Wiedząc, że osoby z podwyższonym ciśnieniem wykazują stłumione reakcje emocjonalne na bodźce emocjonalne, zespół doktora McCubbina postanowił przyjrzeć się zależności między hemodynamiką spoczynkową serca a rozpoznawaniem uczuć. Uwzględniono 106 Afroamerykanów: 55 kobiet i 51 mężczyzn. Średnia wieku wynosiła 52,8 roku. Większość badanych miała niską pozycję socjoekonomiczną. Wszyscy brali udział w pilotażowym studium Healthy Aging in Nationally Diverse Longitudinal Samples.
      Badani oceniali znaczenie emocjonalne wyrazów twarzy i zdań w ramach Testu Percepcji Afektu (Perception of Affect Test, PAT). Stale monitorowano spoczynkowe ciśnienie krwi, całkowity opór obwodowy (ang. total peripheral resistance, TPR), czyli całkowity opór przepływu krwi w naczyniach, tętno oraz rzut serca.
      Okazało się, że ogólny wynik w PAT był odwrotnie związany z wiekiem, a także zarówno ze skurczowym, jak i skurczowym ciśnieniem krwi (im lepszy wynik, tym niższe ciśnienie). Po wzięciu poprawki na zmienne demograficzne, stan umysłu, wskaźnik masy ciała i przyjmowane leki dokładność rozpoznawania afektu w zadaniach PAT nadal pozostała odwrotnie związana z ciśnieniem i całkowitym oporem obwodowym. Naukowcy uważają, że natrafili na ważne powiązania między regulacją emocji przez ośrodkowy układ nerwowy, procesami hemodynamicznymi i rozwojem nadciśnienia.
    • By KopalniaWiedzy.pl
      Ćmy rolnice tasiemki (Noctua pronuba) są tak wyczulone na ultradźwięki polujących nietoperzy, że neurony w ich uchu reagują na ruch błony bębenkowej odpowiadający wielkości atomu. Biolodzy z Uniwersytetu w Bristolu tłumaczą, że gdyby błonę bębenkową przeskalować, by miała grubość ściany z cegieł, owad byłby w stanie wykryć przemieszczenie ścianki na grubość włosa.
      Brytyjczycy tłumaczą, że u motyli występuje narząd tympanalny, który stanowi rodzaj rezonatora pokrytego cienką błoną bębenkową. Znajdują się na niej skolopofory, zbudowane z trzech komórek - jednej nerwowej i dwóch okrywających. Podobnie jak w naszym uchu wewnętrznym, drgania są przekształcane w impulsy elektryczne. Wibracje można opisać za pomocą częstotliwości (jak szybko błona się porusza) oraz natężenia (jak bardzo się przemieszcza). Dotąd nie wiedziano jednak, które z właściwości dźwięku są przekładane na sygnał nerwowy.
      Zespół dr Hannah ter Hofstede spróbował więc jednocześnie monitorować aktywność neuronów ćmy i drgania błony bębenkowej w czasie podawania dźwięków o różnych częstotliwościach i natężeniu. Brytyjczycy zauważyli, że do pobudzenia komórek nerwowych wystarczyło przemieszczenie błony rzędu 140 pikometrów, co odpowiada wielkości niektórych atomów.
      Gdyby neurony po prostu wykrywały dźwięki, to drobne przesunięcie byłoby takie samo dla wszystkich częstotliwości, różniłaby się tylko prędkość wibracji. [W świetle uzyskanych wyników wygląda jednak na to], że neurony słuchowe są aktywowane przez niewielkie przemieszczenia błony bębenkowej, a nie częstotliwość jej drgań - tłumaczy dr Holger Goerlitz. Pewnym wyjątkiem są niskie dźwięki o częstotliwości poniżej 15 kHz, w przypadku których do pobudzenia neuronów dochodziło przy większych przemieszczeniach błony bębenkowej. Ćmy są głuche na niskie, nieszkodliwe dźwięki z tła [muszą być naprawdę głośne, by je odnotowały], co umożliwia im dokładniejsze dostrojenie do ważniejszych odgłosów: ultradźwięków wydawanych przez polujące na nie drapieżniki - podsumowuje dr Hannah ter Hofstede.
×
×
  • Create New...