Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Ekstremalne zdarzenia pogodowe, np. tropikalne cyklony, wywierają ewolucyjny wpływ na populacje pająków żyjące w regionach podatnych na burze. Agresywne osobniki mają bowiem największe szanse na przetrwanie.

Kanadyjczycy wyjaśniają, że wściekłe podmuchy wiatru mogą zniszczyć drzewa, zerwać wszystkie liście i rozrzucić szczątki po dnie lasu, radykalnie zmieniając habitaty i presje selekcyjne oddziałujące na wiele organizmów.

[Co istotne] przez wzrost poziomu mórz częstość występowania takich tropikalnych burz będzie rosła - zaznacza Jonathan Pruitt z McMaster University.

Zespół Pruitta badał żeńskie kolonie pająków Anelosimus studiosus. Te omatnikowate żyją wzdłuż Zatoki Meksykańskiej i atlantyckiego wybrzeża USA i Meksyku, czyli dokładnie na trasie tropikalnych cyklonów tworzących się w basenie Atlantyku między majem a listopadem.

Autorzy publikacji z pisma Nature Ecology & Evolution podkreślają, że obserwowanie i dokumentowanie skutków ekologicznych ekstremalnych wydarzeń pogodowych jest bardzo trudne logistycznie, bo są one definiowane jako zdarzenia Black Swan. W książce pt. "Black Swan. The impact of the Highly Improbable" Nicolas Taleb, finansista z Wall Street, wytłumaczył, że "czarny łabędź" to zdarzenie 1) z gruntu nieprzewidywalne (ewentualnie prawdopodobieństwo jego zajścia jest szacowane jako skrajnie niskie), 2) niosące za sobą spore konsekwencje i 3) mające retrospektywny charakter; po zajściu takiego zdarzenia ludzie zawsze doszukują się przyczyn, czyniąc je przewidywalnym i wytłumaczalnym (jest wytłumaczalne i traktowane jako oczywiste, ale dopiero PO wystąpieniu).

By przeprowadzić badania, naukowcy musieli więc rozwiązać szereg problemów logistycznych i metodologicznych, m.in. przewidzieć trajektorię cyklonów. Populacje próbkowano 2-krotnie: przed uderzeniem cyklonu i w ciągu 48 godzin od jego przejścia.

Próbkowano 240 kolonii z podatnych na burze regionów przybrzeżnych i porównywano je do stanowisk kontrolnych. Biologów szczególnie interesowała kwestia, czy ekstremalna pogoda, w tym przypadku burza tropikalna Alberto oraz huragany Florence i Michael z zeszłego roku, spowodowała, że zaczęły przeważać pewne pajęcze cechy.

Generalnie A. studiosus mogą być łagodne albo agresywne (to cechy dziedziczne). Agresywność kolonii jest określana/definiowana przez 1) szybkość i liczbę atakujących ofiarę, 2) tendencję do zjadania samców i jaj czy 3) podatność na infiltrację przez drapieżne pająki.

Agresywne kolonie lepiej sobie radzą ze zdobywaniem zasobów, gdy jest ich mało, ale z drugiej strony są bardziej podatne na walki wewnętrzne, gdy przez długi czas brakuje pokarmu albo gdy kolonia ulega przegrzaniu.

Tropikalne cyklony często wpływają na oba rodzaje stresorów: zmieniają liczbę latających ofiar i zwiększają ekspozycję słoneczną w bardziej otwartym piętrze koron drzew - wyjaśnia Pruitt.

Analizy sugerowały, że po przejściu tropikalnego cyklonu kolonie z bardziej agresywnymi reakcjami (żerowaniem) produkowały więcej jaj. Do wczesnej zimy przeżywało też więcej młodych pająków. Taki sam trend obserwowano w przypadku licznych burz różniących się wielkością, czasem trwania oraz intensywnością.

Zgromadzone dane sugerują, że dobór wywołany cyklonami napędza ewolucję ważnych cech funkcjonalnych.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pająki z gatunku Argyroneta aquatica całe życie spędzają pod wodą, mimo że są przystosowane do oddychania powietrzem atmosferycznym. Jak to jest możliwe? Otóż ich ciała pokryte są milionami hydrofobowych włosków, które więżą powietrze wokół ciała pająka, zapewniając nie tylko zapas do oddychania, lecz służąc też jako bariera pomiędzy wodą a płucotchawkami zwierzęcia. Ta cienka warstwa powietrza zwana jest plastronem, a naukowcy od dziesięcioleci próbowali ją odtworzyć, by uzyskać materiał, który po zanurzeniu w wodzie będzie odporny na jej negatywne oddziaływanie, czy to na korozję czy na osadzanie na powierzchni bakterii lub glonów. Dotychczas jednak uzyskane przez człowieka plastrony rozpadały się pod wodą w ciągu kilku godzin.
      Naukowcy z  Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), Wyss Institute for Biologically Inspired Engineering at Harvard, Friedrich-Alexander-Universität Erlangen-Nürnberg w Niemczech Germany oraz fińskiego Aalto University poinformowali właśnie o uzyskaniu plastronu, który pozostaje stabilny pod wodą przez wiele miesięcy. Superhydrofobowy materiał, który odpycha krew i wodę, zapobiega osadzaniu się bakterii i organizmów morskich takich jak małże, może znaleźć bardzo szerokie zastosowania zarówno w medycynie, jak i przemyśle.
      Jeden z głównych problemów z uformowaniem się plastronu polega na tym, że potrzebna jest szorstka powierzchnia. Jak włoski na Argyroneta aquatica. Jednak nierówności na powierzchni powodują, że jest ona mechanicznie niestabilne, podatna na niewielkie zmiany temperatury, ciśnienia i niedoskonałości samej powierzchni. Dotychczasowe techniki wytwarzania powierzchni superhydrofobowych brały pod uwagę dwa parametry, a to nie zapewniało dostatecznej ilości danych o stabilności powietrznego plastronu umieszczonego pod wodą. Dlatego naukowcy z USA, Niemiec i Finlandii musieli najpierw zbadać, jakie jeszcze dane są potrzebne. Okazało się, że muszą uwzględniać nierówności powierzchni, właściwości molekuł na powierzchni, sam plastron, kąt styku między powietrzem a powierzchnią i wiele innych czynników. Dopiero to pozwoliło przewidzieć, jak powietrzny plastron zachowa się pod wodą.
      Wykorzystali więc stworzona przez siebie metodę obliczeniową i za pomocą prostych technik produkcyjnych, wykorzystali niedrogi stop tytanu do stworzenie powierzchni aerofilnej, na której tworzył się powietrzny plastron. Badania wykazały, że dzięki niemu zanurzony w wodzie materiał pozostaje suchy przez tysiące godzin dłużej, niż podczas wcześniejszych eksperymentów.
      Wykorzystaliśmy metodę opisu, którą teoretycy zasugerowali już przed 20 laty i wykazaliśmy, że nasza powierzchnia jest stabilna. Oznacza to, że uzyskaliśmy nie tylko nowatorską, ekstremalnie trwałą powierzchnię hydrofobową, ale mamy też podstawy do konstruowania takich powierzchni z różnych materiałów, mówi Alexander B. Tesler z Friedrich-Alexander-Universität Erlangen-Nürnberg.
      Naukowcy stworzyli odpowiednią powierzchnię, a następnie wyginali ją, skręcali, polewali zimną i gorącą wodą, pocierali piaskiem i stalą, by pozbawić ją właściwości aerofilnych. Mimo to utworzył się na niej plastron, który przetrwał 208 dni zanurzenia w wodzie i setki zanurzeń we krwi. Plastron taki znacząco zmniejszył wzrost E.coli, liczbę wąsonogów przyczepiających się do powierzchni i uniemożliwił przyczepianie się małży.
      Nowo opracowana powierzchnia może znaleźć zastosowanie w opatrunkach, zmniejszając liczbę infekcji po zabiegach chirurgicznych czy w biodegradowalnych implantach. Przyda się też do zapobiegania korozji podwodnych instalacji. Być może w przyszłości uda się ją połączyć z opracowaną na SEAS superśliską warstwą ochronną SLICK (Slippery Liquid Infused Porous Surfaces), co jeszcze lepiej powinno chronić całość przed wszelkimi zanieczyszczeniami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Mieszkające w naszych domach pająki unikają powierzchni, po których przeszły mrówki pewnego agresywnego gatunku. To wskazuje, że pozostawiają one po sobie jakiś chemiczny ślad. A ten można by wykorzystać do stworzenia ekologicznych środków odstraszających pająki, dzięki którym np. ludzie z arachnofobią mogliby czuć się bezpieczniej w swoich domach.
      Andreas Fischer z kanadyjskiego Simon Fraser University specjalizuje się w badaniu feromonów pająków. Poszukuje też praktycznych sposobów na utrzymanie zdrowego ekosystemu, przy jednoczesnym zniechęceniu pająków do odwiedzania ludzkich domów. Uczony mówi, że z jednej strony mamy pestycydy, które zabijają wszystko i zaburzają równowagę w ekosystemie, z drugiej zaś domowe porady, takie jak stosowanie skórki cytrynowej czy olejku migdałowego, w żaden sposób nie działają na pająki.
      Ostatnio Fischer zwrócił uwagę na prace innych naukowców, z których wynikało, że tam, gdzie jest więcej mrówek, występuje mniej pająków.
      Uczony zebrał mrówki z trzech różnych gatunków oraz samice czterech gatunków pająków często występujących w północnoamerykańskich domach. Najpierw przez 12 godzin mrówki przebywały na papierowym filtrze w szklanej klatce. Mrówki dobrano równo pod względem wagi, co oznacza, że w przypadku jednego gatunku do eksperymentu użyto 43 mrówek, w przypadku zaś innego – zaledwie trzech.
      Po 12 godzinach mrówki z klatki usuwano i na 24 godziny umieszczano w niej samice pająków, obserwując, jak się zachowuje. Okazało się, że większość czarnych wdów (Latrodectus hesperus), fałszywych czarnych wdów (Steatoda grossa) oraz pająków hobo (Eratigena agrestis), unika papierowego filtra, po którym chodziły wścieklice zwyczajne (Myrmica rubra). Podobne, chociaż nie tak silne zachowanie, zauważono u krzyżaka ogrodowego (Araneus diadematus).
      Fischer sądzi, że pająki mogą unikać mrówek, gdyż wścieklice zwyczajne są szczególnie agresywne, mogą otaczać i zabijać pająki, które weszły na ich teren. Pająki mogły więc wyewoluować tak, by unikać tego gatunku. Hipoteza ta jest tym bardziej uprawniona, że pająki nie unikały miejsc, po których chodziły mrówki z gatunków hurtnica pospolita (Lasius niger) i Camponotus modoc.
      Uczony i jego koledzy nie wiedzą jeszcze, co konkretnie odstrasza pająki. Mają jednak nadzieję, że wkrótce się dowiedzą. A gdy odnajdą roznoszony przez mrówki środek chemiczny, którego boją się pająki, chcą rozpocząć eksperymenty nad stworzeniem jego wersji do użycia w domu.
      Fischer nie zaleca jednocześnie zbierania mrówek i chronienia w ten sposób domów przed pająkami. Ugryzienie wścieklicy zwyczajnej jest bardzo bolesne, a mrówek trudno jest się pozbyć. Stałyby się w domu większym problemem niż pająki, stwierdza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zmiana klimatu stanowi coraz większe zagrożenie dla delfinów zamieszkujących okolice przybrzeżne i ujścia rzek. Ekstremalne zdarzenia pogodowe zaburzają ich habitaty, prowadząc niejednokrotnie do zgonów. Zespół australijskich naukowców przyjrzał się dwóm zdarzeniom, podczas których butlonosy zapadły na słodkowodną chorobę skóry (ang. Freshwater Skin Disease, FWSD).
      W oparciu o 2 zdarzenia z Australii po raz pierwszy byliśmy w stanie w pełni scharakteryzować zmiany skórne i stworzyć definicję przypadku dla tej jednostki chorobowej - podkreśla dr Nahiid Stephens z Murdoch University. Do jednego z tych zdarzeń doszło w 2007 r. u butlonosów południowych (Tursiops australis) z Gippsland Lakes w stanie Wiktoria, a do drugiego w 2009 r. w Swan-Canning Riverpark w Australii Zachodniej [tym razem poszkodowane były butlonosy indyjskie, T. aduncus].
      [...] Mogliśmy przeprowadzić sekcje zwłok, by zidentyfikować przyczynę zgonu i scharakteryzować typowe dla choroby poważne zmiany skórne [...].
      Dr Stephens dodaje, że w 2007 r. podobne zmiany skórne zaobserwowano u butlonosów zwyczajnych z jeziora Pontchartrain w Luizjanie; delfiny trafiły tam, wykorzystując przelew powodziowy rzeki Missisipi (był on związany z huraganem Katrina).
      Przez 3 kolejne lata prowadzono regularne badania delfinów przebywających poza właściwym sobie habitatem. Stwierdzono, że zmiany skórne występują nawet u 100% fotografowanych osobników. Ich nasilenie zmieniało się sezonowo, równolegle do zmian w zasoleniu wody. W okresie objętym badaniem dochodziło do strandingu, ale nie przeprowadzono badań histopatologicznych zapalenia skóry. Podobny scenariusz wystąpił w sierpniu 2017 r. na terenie Galveston Bay; gdy przechodził huragan Harvey, wody deszczowe obniżyły zasolenie z 14 ppt do < 1 ppt. Dzięki długoterminowym fotoidentyfikacyjnym badaniom butlonosów można było udokumentować, jak ssaki wynosiły się z nisko zasolonych obszarów zatoki i jak zmieniało się nasilenie zmian skórnych (bladość i owrzodzenie) przed, w czasie i po huraganie.
      FWDS występuje, gdy dochodzi do nagłego i dużego spadku zasolenia (zmiana dokonuje się na przestrzeni dni) i gdy warunki takie utrzymują się później tygodniami bądź miesiącami - tłumaczy Stephens.
      Naukowcy wyjaśniają, że przed, w czasie i po opisywanych zdarzeniach w Australii monitorowano fizyczne i chemiczne parametry wód zamieszkanych przez delfiny. Po zgonach przeprowadzano szczegółowe sekcje zwłok; by wykluczyć przyczyny infekcyjne, zmiany skórne charakteryzowano za pomocą badań histopatologicznych, mikroskopii elektronowej czy technik molekularnych.
      Mamy szczęście, że populacje delfinów w Australii są dobrze udokumentowane dzięki różnym badaniom [...], co zapewniło kluczowe informacje kontekstowe.
      Wskutek FWSD na skórze delfinów pojawiają się zmiany skórne, których stan się pogarsza aż do rozwoju owrzodzenia. Później następuje oportunistyczna kolonizacja glonami, okrzemkami, grzybami i bakteriami. Skutkiem tego może być zgon spowodowany utratą płynów i nierównowagą elektrolitową; wrzodziejące zmiany skórne przypominają bowiem oparzenia trzeciego stopnia i często dotyczą dużej (procentowo) powierzchni ciała. Istotną rolę odgrywają także zakażenia wtórne.
      Autorzy publikacji z pisma Scientific Reports stwierdzili, że w przypadku Gippsland Lakes fala choroby pojawiła się po wznowieniu sezonowych opadów po długotrwałej suszy. To doprowadziło do zalania normalnie półsłonej-słonej wody wodą słodką. W Australii Zachodniej niezwykle duże zimowo-wiosenne opady deszczu w zlewniach na podobnej zasadzie przekształciły habitat słono- w słodkowodny.
      Dr Stephens zaznacza, że wszystkie fale choroby (śmiertelne zdarzenia) poprzedzały ekstremalne zdarzenia pogodowe, a częstość występowania i siła tych ostatnich będą rosnąć wraz ze zmianą klimatu.
      W oparciu o te ustalenia obawiamy się, że FWSD jest nowo pojawiającą się chorobą waleni, która prawdopodobnie będzie coraz częściej występować skali globalnej w podatnych ujściowych i przybrzeżnych habitatach [...] - podsumowuje Australijka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Murdoch University oraz Departamentu Bioróżnorodności, Ochrony Przyrody i Atrakcji Australii Zachodniej (WA DBCA ) jako pierwsi na świecie zdobyli nagranie, które dokumentuje, jak wygląda atak rekina z perspektywy żółwia. Artykuł na ten temat ukazał się w piśmie Ecology.
      Cała interakcję uwieczniono dzięki nowym inteligentnym znacznikom, przypominającym połączenie kamery sportowej z urządzeniem monitorującym aktywność.
      Jenna Hounslow, doktorantka w Instytucie Harry'ego Butlera, podkreśla, że nie ma niczego dziwnego w tym, że rekin tygrysi próbuje upolować żółwia morskiego, w końcu żółwie stanowią ważną część diety tych drapieżników. Zaskoczyło mnie jednak to, że żółw [natator] agresywnie się bronił, próbując ugryźć atakującego żarłacza.
      W ramach projektu uczeni badają w Roebuck Bay w Australii Zachodniej zachowania żółwi związane z żerowaniem. Agresja i walka mogą być niedostrzeżonymi wcześniej zachowaniami żółwi morskich, gdyż dokumentowanie zwierzęcego punktu widzenia przez dłuższy czas stało się wykonalne dopiero ostatnio - podkreśla Hounslow.
      Dr Sabrina Fossette z WA DBCA dodaje, że wiele aspektów cyklu życiowego żółwi australijskich (Natator depressus) pozostaje dla nauki tajemnicą. Dzięki tej nowej technologii zyskujemy niespotykany dotąd wgląd w poczynania żółwi w czasie, gdy przebywają w morzu, z dala od plaż wylęgu; to najpokaźniejsza, a jednocześnie najsłabiej poznana, część ich życia.
      Przez spłaszczenie pancerza żółw morski nie jest w stanie schować do niego głowy, kończyn ani ogona, tak jak to robią jego lądowi oraz słodkowodni kuzyni. Podejrzewamy, że agresywne zachowanie to sposób na zmniejszenie ryzyka bycia zjedzonym w sytuacji, gdy pancerz nie zapewnia pełnej ochrony. W sfilmowanej sytuacji żółw był w stanie wymknąć się rekinowi niedraśnięty.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedobór pokarmu sprawia, że gąsienice danaidów wędrownych (Danaus plexippus) zaczynają ze sobą walczyć. Celują głową w jedzącego konkurenta, licząc na przejęcie liści trojeści. Wyniki badań zespołu Alexa Keene'a opisano w iScience.
      Zwykle Keene bada muszki owocowe i ryby jaskiniowe, ale pod wpływem przypadkowego spostrzeżenia postanowił przystosować swoje laboratorium do badania monarchów. Moja żona wskazała na podwórku dwie walczące ze sobą gąsienica danaida. Zasiadłem do YouTube'a i znalazłem nagrania tego zachowania. Wcześniej nie było ono udokumentowane w literaturze naukowej.
      Próbując rozszerzyć swoje badania na danaidy, naukowcy musieli się zmierzyć z różnymi trudnościami. W 2019 r. huragan Dorian zniszczył ogródek monarchów. Znalezienie trojeści pozbawionej pestycydów także nie było łatwym zadaniem.
      Koniec końców udało się sfilmować gąsienice, które współzawodniczyły ze sobą, gdy naukowcy zmniejszali ilość dostępnego pokarmu.
      Przy spadającej dostępności pokarmu zauważyliśmy podwyższony poziom agresji - podkreśla Elizabeth Brown. Biolodzy dodają, że szczyt agresywnych zachowań obserwuje się u gąsienic IV i V stadium.
      Próbując zmierzyć agresję u gąsienic monarchów, Keene i jego zespół obserwowali najpierw gąsienice IV i V stadium. U jednych i u drugich obserwowaliśmy streotypową sekwencję agresywnego zachowania. Agresor ustawiał się głową do innej gąsienicy i wykonywał nią szybkie uderzenie [...]. Przeważnie skutkowało to zakończeniem żerowania i odejściem ze wspólnie zajmowanej przestrzeni przez napadniętego osobnika. Wywnioskowaliśmy, że te ruchy stanowiły agresję.
      By określić zależność między agresją a stadium rozwojowym, biolodzy zliczali liczbę ataków. Nie zaobserwowano ich u gąsienic III stadium. Porównanie IV i V stadium ujawniło zaś o wiele więcej agresywnych wypadów u gąsienic z drugiej grupy. Stwierdziliśmy, że relatywnie większe rozmiary starszych gąsienic mogą nasilać konkurencję o zasoby pokarmowe, sprzyjając tym samym agresji.
      Rywalizacja może być silna, ponieważ gąsienice danaidów mają ograniczone możliwości pokarmowe (żywią się liśćmi trojeści i w mniejszym lub większym stopniu trzymają się rośliny przyjścia na świat, bo przeprowadzka wymaga nakładów energii).
      W kolejnym etapie badań naukowcy chcą sprawdzić, czy bardziej agresywne gąsienice stają się bardziej agresywnymi motylami.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...