Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Gdy tylko pada słowo "nanotechnologia", zaraz wyobrażamy sobie ultranowoczesne urządzenia elektroniczne, mikroskopijne mechanizmy oraz gadżety rodem z wysokobudżetowych filmów fantastycznych. Rzeczywistość potrafi być jednak dużo bardziej prozaiczna. Dzięki dodatkowi "nano" możemy mieć na przykład... czystszą odzież. Efektem pracy naukowców z Austalii oraz Chin są samoczyszczące odmiany wełny i jedwabiu. Wbrew szumnej nazwie, materiały te nie zostały wzbogacone o nanomechanizmy, lecz specjalny rodzaj impregnatu, bazujący na dwutlenku tytanu (w postaci anatazu), stosowany m.in. w niektórych typach szyb okiennych. Podobnie, jak w wypadku szyb, cząstki tej substancji, mierzące zaledwie 5 nm, rozkładają związki organiczne pod wpływem światła słonecznego. Dzięki tej właściwości, ubrania wykonane z "nanotkaniny" będą łatwe do wyprania i raczej nieprędko nasiąkną nieprzyjemnym zapachem. Oprócz mniejszego zużycia środków czyszczących, pozwolą one także podnieść poziom higieny, są bowiem bakteriobójcze, podczas gdy w zwykłych tkaninach mikroby potrafią przetrwać nawet trzy miesiące. W ramach prób na opisywanym materiale zabrudzono go czerwonym winem. Po 20-godzinnym naświetlaniu plamy niemal zupełnie zniknęły. Dodatkowymi zaletami impregnatu są nietoksyczność, brak wpływu na fakturę tkaniny oraz możliwość trwałego przymocowania go do włókien. Najwięcej kłopotu sprawiła naukowcom ostatnia właściwość. Udało się ją uzyskać przez odpowiednie "aktywowanie" zawartej we włóknach keratyny. Pytani o możliwość wprowadzenia nowych tkanin na rynek, badacze ostrożnie odpowiadają, że stanie się to dopiero wtedy, gdy nowa technologia zostanie przyjęta zarówno pod względem technicznym, jak i ekonomicznym.

Share this post


Link to post
Share on other sites
Podobnie, jak w wypadku szyb, cząstki tej substancji, mierzące zaledwie 5 nm,  rozkładają związki organiczne pod wpływem światła słonecznego. Dzięki tej właściwości, ubrania wykonane z "nanotkaniny" będą łatwe do wyprania i raczej nieprędko nasiąkną nieprzyjemnym zapachem.

 

To w pralce świeci słońce? W mojej jest ciemno - sprawdzałem.

 

nie rozumiem

Share this post


Link to post
Share on other sites

W pralce lampek nie ma, ale naświetlone poza nią ubranie łatwiej się pierze. Naświetlone szyby łatwiej się zmywa (np. same się zmyją podczas deszczu). I tyle.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Doktor Juan Carlos Colmenares z Instytutu Chemii Fizycznej Polskiej Akademii Nauk pracuje nad robiącą niezwykłe wrażenie metodą oczyszczania wody i odzyskiwania z niej pożytecznych związków chemicznych. Moja praca przypomina trochę alchemię. Biorę ‚magiczny proszek’, wsypuję do brudnej wody, mieszam i wystawiam na słońce. Po paru godzinach mam czystą wodę plus substancje, z których można zrobić użyteczne rzeczy, na przykład leki - mówi uczony.
      Już od końca lat 60. prowadzi się badania nad fotochemiczną degradacją zanieczyszczeń. W IChF PAN badane są fotokatalizatory oraz takie warunki reakcji, by mogła ona przebiegać bez udziału specjalistycznej aparatury i samoczynnie zatrzymywała się na wybranym etapie. Dzięki fotokatalizatorom zawierającym dwutlenek tytanu uczeni uzyskali już z zanieczyszczonej wody np. kwasy karboksylowe używane w farmacji i przemyśle spożywczym. Możliwy jest też rozkład biomasy do najprostszych substancji, np. wodoru czy dwutlenku węgla.
      W warunkach laboratoryjnych reakcje biomasy z udziałem fotokatalizatorów już teraz wyglądają obiecująco. W tym roku przystąpimy do pierwszych testów w pilotażowych fotoreaktorach biochemicznych Uniwersytetu w Kordobie w Hiszpanii. Reakcje będą tam przebiegały w cieczach o objętościach liczonych w dziesiątkach litrów - mówi Colmenares.
      Reakcje, nad którymi pracuje Hiszpan, zachodzą przy zwykłym ciśnieniu atmosferycznym, dobrym nasłonecznieniu i przy temperaturze około 30 stopni Celsjusza. Takie warunki wystepują naturalnie w wielu krajach na całym świecie.
    • By KopalniaWiedzy.pl
      Obunogi z gatunku Crassicorophium bonellii wytwarzają niewrażliwą na oddziaływania słonej wody, lepką nić, za pomocą której spajają ziarna piasku na norki. Na odnóżach skorupiaka znajdują się ujścia specjalnych gruczołów. Co ciekawe, zwierzę łączy techniki produkcji cementów wąsonogów i jedwabnych nici pająków.
      Jak tłumaczą autorzy artykułu, który ukazał się w piśmie Naturwissenschaften, włóknisty jedwab stanowi mieszaninę glikozaminoglikanów i białek. Wydzielina 2 typów gruczołów pokonuje przewód, który rozgałęzia się na szereg mniejszych. Wszystkie uchodzą do wspólnej komory o wrzecionowatym kształcie.
      Wg biologów, komora stanowi przechowalnię oraz rodzaj mieszalni obu rodzajów wydzieliny. Tutaj jedwab jest mechanicznie, a może i chemicznie zmieniany, by stać się włóknisty.
      Profesor Fritz Vollrath z Uniwersytetu Oksfordzkiego opowiada, że budując sobie schronienie, C. bonellii zlepia nicią piasek, glony, a nawet własne odchody. Naukowcy już wcześniej wiedzieli, że lepka substancja pochodzi z odnóży, ale dopiero teraz zorientowali się, że obunogi wyciągają ją w nić w podobny sposób jak pająki.
      Poza tym, że nić jest wodoodporna, niewiele wiadomo o jej właściwościach. Vollrath podejrzewa, że może być równie wytrzymała i elastyczna, co nić pajęcza. Ze względu na specyficzne środowisko, w którym jest wykorzystywana, musi jednak także mieć pewne unikatowe cechy.
      Zrozumienie sekretów tego typu materiałów pozwoliłoby opracować kleje wykorzystywane w wodzie morskiej czy metody zapobiegania porastaniu kadłubów statków.
    • By KopalniaWiedzy.pl
      Materiał opracowany w Oak Ridge National Laboratory może posłużyć do stworzenia bardziej pojemnych i bezpiecznych baterii, które będzie można ładować szybciej niż obecne baterie litowo-jonowe.
      Zespół pracujący pod kierunkiem Hansana Liu, Gilberta Browna i Paransa Paranthamana odkrył, że dzięki tlenkowi tytanu można zwiększyć pojemność baterii litowo-jonowych, a przy okazji skrócić czas ich ładowania. W ciągu sześciu minut możemy załadować baterie do połowy pojemności, podczas gdy tradycyjne urządzenie załaduje się w tym czasie do 10% pojemności - mówi Liu.
      Stop z ORNL jest też bardziej pojemny niż obecnie wykorzystywany tytanat litu. Pozwala bowiem na przechowanie 256, a nie jak dotychczas 165, miliamperogodzin na gram. Ponadto tlenki są bardzo bezpieczne i trwałe w użytkowaniu, co czyni nowy materiał świetnym rozwiązaniem np. dla pojazdów elektrycznych.
      Głównym składnikiem materiału jest nowa architektura dwutlenku tytanu, znana jako mezoporowe mikrosfery TiO2-B, która składa się z mikrokanalików i porów pozwalających na swobodny przepływ jonów, co umożliwia szybkie ładowanie i rozładowywanie baterii. Tlenek tytanu został tutaj wzbogacony polimorficznym brązem.
      Jak twierdzi Liu, nowy materiał może być tani i nadaje się do produkcji przy użyciu współcześnie wykorzystywanych technik.
    • By KopalniaWiedzy.pl
      Profesor Hwang Jenn-Chang i dwóch studentów z tajwańskiego Narodowego Universytetu Tsing Hua potrzebowali niecałych dwóch lat na opracowanie technologii pozwalającej wykorzystywać jedwab w układach elektronicznych. W ten sposób uzyskali elastyczną elektronikę i już prowadzą z przedstawicielami przemysłu rozmowy o wdrożeniu jej produkcji.
      Tajwańska technologia pozwala na zmianę płynnego jedwabiu w membrany działające jak izolatory w tranzystorach cienkowarstwowych.
      Olbrzymią zaletą jedwabiu jest jego niska cena, a w miarę obniżania się cen urządzeń, producenci szukają coraz tańszych materiałów do ich produkcji.
    • By KopalniaWiedzy.pl
      Dwutlenek tytanu to jeden z „cudownych" materiałów współczesnej technologii. Przydaje się w roli katalizatora w wielu procesach chemicznych, stosowany jest także jako środek antybakteryjny i domieszkowany do farb, czy nawet w „cudownych" szczoteczkach do zębów, nie wymagających pasty. Jednym z ciekawszych zastosowań jest jego zdolność do neutralizowania szkodliwych tlenków azotu, na przykład emitowanych przez samochody. Naukowcy z Uniwersytetu w Eindhoven odkryli, jak domieszkować dwutlenek tytanu (TiO2) do betonu, uzyskując drogi które same neutralizują niemal połowę spalin samochodowych.
       
      Beton nasz powszedni
       
      Te same wątpliwości dotyczą innych nanocząstek, jakie bada doktor Anil Kumar Suresh wraz ze współpracownikami z Biological and Nanoscale Systems Group w amerykańskim Oak Ridge National Laboratory. Na podobnych zasadach stosuje się bowiem nanocząstki złota (Ag), tlenku cynku (ZnO) i dwutlenku ceru (CeO2). Dr Suresh tłumaczy, że szkodliwość nanocząstek jest trudna do określenia, zależy bowiem od bardzo wielu czynników: rozmiaru, kształtu, technologii produkcji i zastosowanych chemikaliów, związków chemicznych, które mogą pozostawać na ich powierzchni. Oszacowanie szkodliwości materiału pochodzącego od jednego producenta nic nam nie mówi o właściwościach formalnie takiego samego materiału, ale pochodzącego z innej firmy. Producenci tymczasem nie udzielają informacji o przeznaczeniu produktów, sposobach produkcji, czy transportu.
      W przypadku dwutlenku tytanu większość rodzajów nanocząsteczek jest szkodliwa, z wyjątkiem tych wytwarzanych metodami biologicznymi (przez grzyby lub bakterie, które prawdopodobnie pokrywają nanocząstki ochronnymi proteinami). Jednak wszystkie komercyjnie dostępne nanocząstki TiO2 produkowane są metodami chemicznymi. Co więcej, promieniowanie radiowe zwiększa ich szkodliwość nawet od dwudziestu do czterdziestu razy.
      Tymczasem domieszkowanie materiałów dwutlenkiem tytanu i innymi katalizatorami jest coraz bardziej powszechne, a nie ma właściwie żadnych badań nad długotrwałymi efektami ich stosowania. Nawet biorąc za dobrą monetę zapewnienia producenta, że mikrocząstki TiO2 nie mogą uwolnić się z materiału, pozostaje zbyt wiele niewiadomych. A tymczasem może się okazać, że długofalowe efekty okażą się brzemienne w skutki, jak to ostatnio dzieje się z ponoć „całkowicie bezpiecznym" Bisfenolem A.
×
×
  • Create New...