Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Potężna kolizja rozbiła jądro Jowisza
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Astronomowie nazywają Jowisza „architektem” Układu Słonecznego. Jego potężne pole grawitacyjne odegrało ważną rolę w ukształtowaniu orbit pozostałych planet, wpłynęło na kształt ich dysków protoplanetarnych. Teraz profesorowie Konstantin Batygin z California Institute of Technology i Fred C. Adam z University of Michigan poinformowali na łamach Nature Astronomy, że w przeszłości Jowisz był znacznie większy i wywierał znacznie silniejsze oddziaływanie grawitacyjne.
Naszym celem jest zrozumienie, skąd się wzięliśmy. Żeby to wiedzieć, musimy poznać wczesne fazy formowania się planet. To prowadzi nas do zrozumienia, a jaki sposób swój obecny kształt nabył nie tylko Jowisz, ale cały Układ Słoneczny, stwierdza Batygin.
Naukowcy przyjrzeli się niewielkim księżycom Jowisza, Amaltei i Tebe. Orbity obu są nieco nachylone względem Jowisza, naukowcy wykorzystali je do obliczenia pierwotnej wielkości Jowisza. Z obliczeń tych wynika, że 3,8 miliona lat po tym, jak uformowały się pierwsze planety skaliste Układu Słonecznego, Jowisz miał dwukrotnie, a może nawet dwuipółkrotnie, większą średnicę niż obecnie. Jego pole magnetyczne było zaś 50-krotnie silniejsze niż obecnie. Nasze obliczenia są całkowicie zgodne z teorią o formowaniu się olbrzymich planet i pozwalają na wgląd w system Jowisza pod koniec istnienia mgławicy przedsłonecznej - czytamy na łamach Nature Astronomy.
Ważnym aspektem badań jest oparcie się przez naukowców na danych, które nie są obarczone takim poziomem niepewności jak zwykle używane modele, w których przyjmuje się założenia odnośnie przejrzystości gazu, tempa akrecji czy masy jądra formującej się planety. Batygin i Adams wykorzystali dynamikę orbitalną księżyców Jowisza oraz moment pędu samej planety, czyli wartości, które można bezpośrednio zmierzyć.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W przeszłości Mars posiadał silne pole magnetyczne. Obecnie pozostały po nim ślady w marsjańskich skałach. Są to jednak ślady nietypowe. Sonda Mars Global Surveyor już w 1999 roku zauważyła, że skały na południowej półkuli Marsa noszą ślady silnego oddziaływania pola magnetycznego. Na półkuli północnej tak silnych sygnałów nie zauważono. Zjawisko to od dawna zastanawiało naukowców. Teraz uczeni z Instytutu Geofizyki University of Texas zaproponowali rozwiązanie zagadki.
Ostatnie pomiary wykonane przez misję InSight pokazują, że jądro Marsa jest mniej gęste niż sądzono. To wskazuje, że Mars prawdopodobnie nigdy nie miał stałego jądra, czytamy na łamach Geophysical Research Letters. Zespół Chi Yana opisał wyniki swoich symulacji komputerowych, z których wynika, że całkowicie płynne jądro, bez części z ciała stałego, dobrze wyjaśnia widoczną różnicę w zapisie oddziaływania pola magnetycznego na różnych półkulach. Jeśli nie ma sztywnego wewnętrznego jądra, ze znacznie większą łatwością powstaje pole magnetyczne obejmujące tylko jedną półkulę. To zaś mogło mieć wpływ zarówno na działanie pola magnetycznego Marsa oraz jego możliwość utrzymania atmosfery, wyjaśnia Yan.
Dotychczas większość badaczy zakładała, że jądro Marsa jest podobne do ziemskiego i składa się ze stałego jądra wewnętrznego oraz otaczającego je płynnego jądra zewnętrznego. Badania misji InSight pokazały, że jądro Marsa składa się z lżejszych pierwiastków niż się spodziewano. To zaś oznacza, że jego temperatura topnienia jest inna niż temperatura topnienia jądra Ziemi i prawdopodobnie jest ono całkowicie płynne. Jeśli zaś jądro Czerwonej Planety jest płynne obecnie, to niemal na pewno było płynne 4 miliardy lat temu, gdy Mars posiadał silne pole magnetyczne, wyjaśnia profesor Sabine Stanley z Uniwersytetu Johnsa Hopkinsa.
Uczeni postanowili przetestować tę hipotezę i stworzyli model, który symulował całkowicie płynne jądro Marsa. Uruchomili go kilkanaście razy, za każdym tak ustawiając parametry symulacji, by płaszcz planety na półkuli północnej był nieco cieplejszy niż na półkuli południowej. Okazało się, że przy pewnej różnicy temperatur ciepło uciekające z jądra było uwalniane tylko przez chłodniejszą półkulę południową, co powodowało pojawienie się na niej silnego pola magnetycznego. Nie wiemy, czy to wyjaśnia historię pola magnetycznego Marsa, ale niezwykle ekscytujące jest samo stwierdzenie, że na planecie może istnieć pole magnetyczne obejmujące tylko jej część, a struktura symulowanego jądra pasuje do badań przeprowadzonych przez InSight, mówi Stanley.
Zdaniem naukowców, ich badania to przekonująca alternatywa dla hipotezy mówiącej, że ślady działania pola magnetycznego na półkuli północnej zostały zniszczone przez uderzenia asteroid.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Kwintecie Stephana, na galaktycznym skrzyżowaniu, w którym dawne kolizje galaktyk pozostawiły po sobie liczne szczątki, dochodzi właśnie do kolejnego zderzenia. Bierze w nim udział galaktyka pędząca z prędkością 3,2 milionów km/h. Kolizję, w bezprecedensowej rozdzielczości, zaobserwował międzynarodowy zespół naukowy korzystający z William Herschel Telescope Enhaced Area Velocity Explorer (WEAVE). To supernowoczesny spektrograf, zamontowany przed dwoma laty na William Herschel Telescope na Wyspach Kanaryjskich.
Zderzenie zostało spowodowane przez galaktykę NGC 7318b, która przedziera się przez Kwintet. W jego efekcie powstała potężna fala uderzeniowa, podobna do fali, jaka ma miejsce, gdy samolot przekracza barierę dźwięku.
Kwintet Stephana został odkryty około 150 lat temu. To grupa powiązanych ze sobą grawitacyjnie pięciu galaktyk. Cztery z nich znajdują się w odległości około 290 milionów lat świetlnych od nas, piąta położona jest w odległości 40 milionów lś. Kwintet jest idealnym naturalnym laboratorium służącym do badań interakcji pomiędzy galaktykami. Nic więc dziwnego, że stał się pierwszym celem obserwacyjnym WEAVE.
Doktor Marina Arnaudova z University of Hertfordshire, która stoi na czele grupy badawczej, mówi, że Kwintet nie tylko doświadcza kolejnego w swej historii potężnego zderzenia, ale dzięki niemu astronomowie odkryli podwójną naturę fali uderzeniowej. W miarę, jak wędruje ona przez zimy gaz, ma prędkość hipersoniczną, w medium międzygalaktycznym Kwintetu porusza się z prędkością kilkunastokrotnie większą od prędkości dźwięku. Fala jest tak potężna, że wyrywa elektrony z atomów, pozostawiając za sobą świecący gaz, który obserwujemy za pomocą WEAVE. Jednak gdy fala przechodzi przez otaczający Kwintet gorący gaz, staje się znacznie słabsza. Zamiast dokonywać w nim zniszczeń, fala kompresuje gaz, co prowadzi do pojawienia się emisji w zakresie fal radiowych, którą rejestrują radioteleskopy, takie jak Low Frequency Array (LOFAR), doaje doktorant Soumyadeep Das.
Nowe, niezwykle szczegółowe informacje, zebrano dzięki połączeniu danych z WEAVE, LOFAR, Very Large Array i Teleskopu Jamesa Webba. Eksperci są przede wszystkim zachwyceni możliwościami WEAVE. Maja nadzieję, że nowy instrument zrewolucjonizuje naszą wiedzę o wszechświecie. Już ta pierwsza praca naukowa powstała za jego pomocą pokazała, jak wielki potencjał tkwi w spektrografie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Firma Atlantic Wreck Salvage (AWS) poinformowała o odnalezieniu wraku transatlantyckiego liniowca, który zatonął w czasie dziewiczego rejsu po kolizji z inną jednostką. Le Lyonnais pochodził z początków epoki liniowców. Został wybudowany w 1855 roku w stoczni Laird & Sons dla Compagnie Franco-Americaine. Był jedną z sześciu jednostek wykorzystywanych przez to przedsiębiorstwo do przewożenia pasażerów i poczty przez Atlantyk. Le Lyonnais był wyposażony w dwie nowinki z epoki. Obok żagli miał śrubę napędzaną silnikiem parowym oraz żelazny kadłub.
Jednostka została zwodowana w styczniu 1856 roku. Miała wozić pasażerów na trasie Nowy Jork – Hawr. Drugiego października 1856 roku, podczas powrotu z dziewiczego rejsu, gdy Le Lyonnais płynął do Hawru, doszło do zderzenia z barkentyną Adriatic, która płynęła z Belfastu w stanie Maine do Savannah w Georgii. Adriatic nie zatrzymał się, a jego załoga skierowała jednostkę do najbliższego portu, Gloucester w stanie Massachusetts, gdzie dotarła dwa dni później i przeszła naprawy.
Załoga żaglowca początkowo nie wspomniała o kolizji sądząc, że parowiec w niej nie ucierpiał. Później jej kapitan napisał oświadczenie, które zostało opublikowane na łamach The New York Times 19 października. Parowiec nie zmieniał kursu, co oznaczało, że zmierza wprost na nasz ster. Próbowaliśmy ratować się zwrotem przez sztag, ale było za późno i uderzyliśmy w parowiec, czytamy.
W kadłubie Le Lyonnais pojawiła się seria niewielkich dziur, które załoga bezskutecznie próbowała załatać. W końcu trzy dni później liniowiec zatonął pochłaniając 114 pasażerów i członków załogi. Uratowało się 18 osób, które na łodziach dotarły na ląd.
Zatonięcie liniowca natychmiast stało się międzynarodową sensacją. Były to czasy, gdy statki i okręty przechodziły z napędu żaglowego na parowy, katastrofa wpisywała się więc w spory dotyczące technologii oraz w ówczesną sytuację geopolityczną. Pytano, które jednostki – żaglowe czy parowe – powinny mieć pierwszeństwo, jak na wodach międzynarodowych powinny zachowywać się jednostki z różnych krajów oraz czy kapitan Adriatica powinien ponieść odpowiedzialność.
Kapitan barkentyny Jonathan Durham nadal pływał, woził m.in. drewno do Francji. Władze zajęły jego statek, a jego samego postawiły przed sądem. Durham stał się celebrytą i bohaterem w USA. Wkrótce wybuchła wojna secesyjna i kwestia kolizji oraz odpowiedzialności nie została nigdy wyjaśniona.
Przedstawiciele AWS poinformowali, że Le Lyonnais spoczywa na dnie w odległości około 140 mil na wschód od Nantucket w stanie Massachusetts. Dokładnej lokalizacji nie zdradzili, nie chcą bowiem, by pojawili się tam inni nurkowie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Tysiące kilometrów pod naszymi stopami, wewnątrz płynnego jądra Ziemi, znajduje się nieznana dotychczas struktura, donoszą naukowcy z Australian National University (ANU). Struktura ma kształt torusa (oponki), znajduje się na niskich szerokościach geograficznych i jest równoległa do równika. Nikt wcześniej jej nie zauważył.
Jądro Ziemi składa się z dwóch warstw, sztywnej wewnętrznej oraz płynnej zewnętrznej. Nowo odkryta struktura znajduje się w górnych partiach jądra zewnętrznego, gdzie jądro spotyka się z płaszczem ziemskim.
Współautor badań, geofizyk Hrvoje Tkalčić mówi, że fale sejsmiczne wędrują wolniej w nowo odkrytym regionie, niż w reszcie jądra zewnętrznego. Region ten znajduje się na płaszczyźnie równikowej, na niskich szerokościach geograficznych i ma kształt donuta. Nie znamy jego dokładnej grubości, ale uważamy, że rozciąga się on na kilkaset kilometrów poniżej granicy jądra i płaszcza, wyjaśnia uczony.
Uczeni z ANU podczas badań wykorzystali inną technikę niż tradycyjne obserwacje fal sejsmicznych w ciągu godziny po trzęsieniu. Badacze przeanalizowali podobieństwa pomiędzy kształtami fal, które docierały do nich przez wiele godzin od wstrząsów. Zrozumienie geometrii rozprzestrzeniania się fal oraz sposobu, w jaki przemieszczają się przez jądro zewnętrzne, pozwoliło nam zrekonstruować czasy przejścia przez planetę i wykazać, że ten nowo odkryty region sejsmiczny cechuje wolniejsze przemieszczanie się fal, stwierdza Tkalčić.
Jądro zewnętrzne zbudowane jest głównie z żelaza i niklu. To w nim, dzięki ruchowi materiału, powstaje chroniące Ziemię pole magnetyczne, które umożliwiło powstanie złożonego życia. Naukowcy sądzą, że szczegółowe poznanie budowy zewnętrznego jądra, w tym jego składu chemicznego, jest kluczowe dla zrozumienia pola magnetycznego i przewidywania tego, kiedy może potencjalnie osłabnąć.
Nasze odkrycie jest istotne, gdyż wolniejsze rozprzestrzenianie się fal sejsmicznych w tym regionie wskazuje, że znajduje się tam dużo lekkich pierwiastków. Te lżejsze pierwiastki, wraz z różnicami temperatur, pomagają w intensywnym mieszaniu się materii tworzącej jądro zewnętrzne. Pole magnetyczne to podstawowy element potrzebny do podtrzymania istnienia życia na powierzchni planety, zwraca uwagę profesor Tkalčić.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.