Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Materiał z jądra Ziemi trafia na powierzchnię

Rekomendowane odpowiedzi

Naukowcy od dziesięcioleci spierają się o to, czy dochodzi do wymiany materiału pomiędzy jądrem Ziemi, a warstwami położonymi powyżej. Jądro jest niezwykle trudno badać, częściowo dlatego, że rozpoczyna się na głębokości 2900 kilometrów pod powierzchnią planety.

Profesor Hanika Rizo z Carleton University, wykładowca na Queensland University of Technology David Murphy oraz profesor Denis Andrault z Universite Clermont Auvergne informują, że znaleźli dowody na wymianę materiału pomiędzy jądrem, a pozostałą częścią planety.

Jądro wytwarza pole magnetyczne i chroni Ziemię przed szkodliwym promieniowaniem kosmicznym, umożliwiając istnienie życia. Jest najcieplejszym miejscem Ziemi, w którym temperatury przekraczają 5000 stopni Celsjusza. Prawdopodobnie odpowiada ono za 50% aktywności wulkanicznej naszej planety.

Aktywność wulkaniczna to główny mechanizm, za pomocą którego Ziemia sie chłodzi. Zdaniem Rizo, Murphy'ego i Andraulta niektóre procesy wulkaniczne, np. te na Hawajach czy na Islandii, mogą brać swój początek w jądrze i transportować ciepło bezpośrednio z wnętrza planety. Twierdzą oni, że znaleźli dowód na to, iż do płaszcza ziemskiego trafia materiał z jądra.

Odkrycia dokonano badając niewielkie zmiany w stosunku izotopów wolframu. Wiadomo, że jądro jest zbudowane głównie z żelaza i aluminium oraz z niewielkich ilości wolframu, platyny i złota rozpuszczonych w żelazno-aluminiowej mieszaninie. Wolfram ma wiele izotopów, w tym wolfram-182 i wolfram-184. Wiadomo też, że stosunek wolframu-182 do wolframu-184 jest w płaszczu znacznie wyższy niż w jądrze. Dzieje się tak dlatego, że hafn, który nie występuje w jądrze, posiada izotop hafn-182. Izotop ten występował w przeszłości w płaszczu, jednak obecnie już go nie ma, gdyż rozpadł się do wolframu-182. Właśnie dlatego stosunek wolframu-182 do wolframu-184 jest w płaszczu wyższy niż w jądrze.

Uczeni postanowili więc zbadać stosunek izotopów wolframu, by przekonać się, czy na powierzchni występują skały zawierające taki skład wolframu, jaki odpowiada jądru. Problem w tym, że istnieje mniej niż 5 laboratoriów zdolnych do badania wolframu w ilościach nie przekraczających kilkudziesięciu części na miliard.

Badania udało się jednak przeprowadzić. Wykazały one, że z czasem w płaszczu Ziemi doszło do znaczącej zmiany stosunku 182W/184W. W najstarszych skałach płaszcza stosunek ten jest znacznie wyższy niż w skałach młodych. Zespół badaczy uważa, że zmiana ta wskazuje, iż materiał z jądra przez długi czas trafiał do płaszcza ziemskiego. Co interesujące, na przestrzeni około 1,8 miliarda lat nie zauważono zmiany stosunku izotopów. To oznacza, że pomiędzy 4,3 a 2,7 miliarda lat temu do górnych warstw płaszcza materiał z jądra nie trafiał w ogóle lub trafiało go niewiele. Jednak 2,5 miliarda temu doszło do znaczącej zmiany stosunków izotopu wolframu w płaszczu. Uczeni uważają, że ma to związek z tektoniką płyt pod koniec archaiku.

Jeśli materiał z jądra trafia do na powierzchnię, to oznacza, że materiał z powierzchni Ziemi musi trafiać głęboko do płaszcza. Proces subdukcji zabiera bogaty w tlen materiał w głąb planety. Eksperymenty zaś wykazały, że zwiększenie koncentracji tlenu na granicy płaszcza i jądra może spowodować, że wolfram oddzieli się od jądra i powędruje do płaszcza. Alternatywnie, proces zestalania wewnętrznej części jądro może prowadzić do zwiększenia koncentracji tlenu w części zewnętrznej. Jeśli uda się rozstrzygnąć, który z procesów zachodzi, będziemy mogli więcej powiedzieć o samym jądrze Ziemi.

Jądro było w przeszłości całkowicie płynne. Z czasem stygło i jego wewnętrzna część skrystalizowała, stając się ciałem stałym. To właśnie obrót tej części jądra tworzy pole magnetyczne chroniące Ziemię przed promieniowaniem kosmicznym. Naukowcy chcieliby wiedzieć, jak przebiegał proces krystalizacji o określić jego ramy czasowe.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Koala to jedne z najbardziej rozpoznawalnych i lubianych zwierząt na Ziemi. Te niewielkie ssaki są jednak zagrożone w wyniku utraty i fragmentacji siedlisk oraz trapiących je chorób. Wiemy, że niemal całe życie spędzają na drzewach, schodzą z nich tylko, by przemieścić się na inne drzewo. I pomimo tego, że na gatunek ten zwraca się dużo uwagi, nauka niewiele wie o tych nielicznych chwilach, które zwierzęta spędzają na ziemi. Tymczasem z najnowszych badań wynika, że właśnie to zabija koale.
      Już poprzednie badania zgonów koali pokazały, że do 66% zgonów wśród nich dochodzi w momencie, gdy są na ziemi. Są tam głównie zabijane przez psy oraz samochody. Nie wiemy, jak często koala schodzą z drzew, jak daleko i jak szybko się przemieszczają, jak długo pozostają na ziemi, dlaczego schodzą z drzew. To niezwykle ważne informacje, których potrzebujemy, jeśli chcemy zidentyfikować najbardziej zagrożone obszary lub pory dnia i opracować strategie zmniejszenia zagrożeń czyhających na te zwierzęta, mówi doktorantka Gabriella Sparkes z University of Queensland.
      Uczona wraz z zespołem wyposażyła dzikie koale w nadajniki GPS oraz akcelerometry. Urządzenia założono zwierzętom żyjącym na obszarach, na których wiele drzew wycięto na potrzeby rolnictwa. Pozycję koali rejestrowano co 5 minut, a gdy znalazły się na ziemi, była ona odnotowywana co 5 sekund. Dzięki temu możliwe było precyzyjne określenie zachowań zwierząt.
      Tym, co zaszokowało naukowców, był fakt, jak wiele czasu zwierzęta spędzają na drzewach. Okazało się, że schodzą one z nich zaledwie 2-3 razy w ciągu nocy, a łączny czas przebywania na gruncie wynosi zaledwie około 10 minut. Z badań wynika też, że przebywające na ziemi zwierzę porusza się naprawdę powoli. Niemal tyle samo czasu spędzały na siedzeniu i staniu, co na przemieszczaniu się, a szybciej poruszają się jedynie przez 7% czasu spędzanego na gruncie. To może oznaczać, że zwierzęta bardzo szczegółowo oceniają otocznie, być może starannie wybierają drzewa, na które chcą wejść, a być może szybszy ruch wiąże się z olbrzymim wydatkiem energetycznym.
      Dokonane odkrycie przynosi niezwykle ważne informacje i pokazuje, jak wielkim zagrożeniem jest wycinka drzew. Skoro w ciągu tych zaledwie 10 minut przebywania na gruncie, ginie aż 2/3 zwierząt, a fragmentacja siedlisk powoduje, że koala zmuszone są przebywać na gruncie coraz więcej czasu, dalsze niszczenie środowiska może przynieść gatunkowi zagładę.
      Teraz autorzy badań oceniają te cechy habitatów koali, które decydują, jak długo zwierzęta pozostają na drzewach. Jeśli zidentyfikujemy gatunki drzew lub warunki środowiskowe powodujące, że zwierzęta dłużej zostają na drzewach, być może będziemy w stanie tak zarządzać krajobrazem, że rzadziej będą musiały schodzić z drzew, mówi Sparkes.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ciągu ostatnich 200 lat ludzkość wybudowała tyle zapór wodnych, że masa nagromadzonej wody doprowadziła do przesunięcia się skorupy Ziemi w stosunku do osi obrotu naszej planety. Pierwsza ze zmian została wywołana przez zapory wybudowane w Amerykach, drugą zaś spowodowało budowanie zapór w Afryce i Azji.
      Skorupa Ziemi leży na plastycznej, częściowo stopionej górnej części płaszcza planety. Może się więc względem niego przesuwać. I przesuwa się w wyniku zmiany rozkładu masy. Wówczas zmienia się też położenie punktów na skorupie, które wcześniej stanowiły bieguny planety.
      Geolodzy z Uniwersytetu Harvarda opublikowali na łamach Geophysical Research Letters artykuł, w którym ocenili wpływ 6862 zapór wodnych wybudowanych przez człowieka w latach 1835–2011 na położenie skorupy.
      Pomiędzy rokiem 1835 a 1954 w Ameryce Północnej i – w znacznie mniejszym stopniu – w Europie wybudowano tak wiele zapór wodnych, że w wyniku zmian dystrybucji masy na planecie dotychczasowy punkt wyznaczający biegun północny przesunął się 20,5 centymetra w kierunku 103. południka na wschód od Greenwich, który przechodzi przez Rosję, Mongolię, Chiny, Wietnam, Laos i Indonezję. Z tych ponad 20 centymetrów ruchu na wiek XIX przypadało jedynie 0,7 cm. Następnie w latach 1954–2011 tamy wybudowane w Afryce Wschodniej i Azji spowodowały, że doszło do przesunięcia o 57,1 cm w kierunku południka 117. zachodniego, przebiegającego przez zachodnie części Kanady i USA.
      Uwięzienie tak wielkich ilości wody w zaporach spowodowało, że w badanym okresie poziom oceanów spadł o 21 milimetrów. A raczej nie zwiększył się o te 21 mm. W badanych zaporach znajduje się około 8000 kilometrów sześciennych wody.
      W sumie, z różnych przyczyn, w latach 1835–2011 skorupa ziemska przesunęła się o około 113 centymetrów, z czego 104 centymetry przypadają na wiek XX.
      Źródło: True Polar Wander Driven by Artificial Water Impoundment: 1835–2011, https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GL115468

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przez ostatnich 540 milionów lat zmiany w sile pola magnetycznego Ziemi były skorelowane z poziomem atmosferycznego tlenu, donosi amerykańsko-brytyjski zespół naukowy. Wyniki badań sugerują, że procesy zachodzące głęboko wewnątrz naszej planety mogły mieć wpływ na organizmy żywe na powierzchni Ziemi. O swoim odkryciu uczeni poinformowali na łamach Science Advances.
      Historia ziemskiego magnetyzmu zapisana jest w skałach. Gdy rozgrzane minerały znajdujące się magmie stygną, mogą zapisać stan lokalnego pola magnetycznego. I zapis ten pozostanie w nich dopóty, dopóki nie zostaną ponownie silnie rozgrzane. Również ze skał i minerałów można odczytać poziom tlenu w atmosferze, gdyż ich skład chemiczny zależy od ilości tlenu w czasie, gdy się tworzyły. I jeden, i drugi zapis jest od dawna używany w nauce, informacje takie można znaleźć w olbrzymiej liczbę baz danych utworzonych na potrzeby badań geofizycznych i geochemicznych. Jednak, jak twierdzą autorzy nowych badań, dotychczas nikt nie wpadł na pomysł, by dokładnie porównać ze sobą oba zapisy.
      Zadania takiego podjęli się Weijia Kuang i Ravi Kopparapu z NASA Goddard Space Flight Center, Joshua Krissansen-Totton z University of Washington oraz Benjamin J. W. Mills z University of Leeds. Te dwa zestawy danych są bardzo podobne. Ziemia to jedyna znana nam planeta, która podtrzymuje złożone formy życia. Korelacja, którą znaleźliśmy, pozwoli nam lepiej zrozumieć ewolucję oraz jak jest ona powiązana z procesami zachodzącymi wewnątrz planety, mówi Weijia Kiang.
      Uczeni prześledzili zmiany siły pola magnetycznego i poziomu tlenu w atmosferze aż do czasów eksplozji kambryjskiej, w czasie której nagle pojawiło się wiele złożonych form życia. Istnienie korelacji pomiędzy siłą pola magnetycznego, a poziomem tlenu sugeruje, że oba te zjawiska mogą być reakcją na ten sam proces, na przykład na ruch kontynentów, uważa Benjamin Mills.
      Naukowcy mają nadzieję, że uda im się prześledzić jeszcze dłuższy okres historii Ziemi. Chcą sprawdzić, czy znaleziona korelacja się utrzyma. Planują też poddać analizie inne pierwiastki niezbędne do istnienia życia, by przekonać się, czy i w ich przypadku widać taki sam schemat.
      Źródło: Strong link between Earth’s oxygen level and geomagnetic dipole revealed since the last 540 million years, https://www.science.org/doi/10.1126/sciadv.adu8826

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy od niemal 30 lat zauważono najcięższe jądro rozpadające się metodą emisji protonu, poinformowali naukowcy z Laboratorium Akceleratorowego na Universytecie w Jyväskylä. Poprzednie najcięższe jądro rozpadające się w ten sposób zarejestrowano w 1996 roku. Emisja protonu to rzadki rodzaj rozpadu radioaktywnego, w wyniku którego jądro emituje proton, by stać się bardziej stabilne, mówi doktorantka Henna Kokkonen. To kolejne osiągnięcie młodej uczonej, o którym informujemy.
      Henna zaraz po ukończeniu studiów odkryła nieznany izotop astatu, najrzadszego pierwiastka występującego w skorupie ziemskiej. Zauważony przez nią astat-190 był najlżejszym izotopem astatów. Jednocześnie uczona zauważyła sygnały, które mogły świadczyć o pojawieniu się innego nieznanego izotopu, astatu-188. I to właśnie jego dotyczy najnowsze odkrycie. Jak bowiem stwierdziła obecnie Henna, astat-188 – najlżejszy izotop astatu – jest najcięższym pierwiastkiem rozpadającym się poprzez emisję protonu. Dotychczas tytuł ten należał do bizmutu-185.
      Astat-188 ma 85 protonów i 103 neutrony. Tak egzotyczne pierwiastki są trudne do badania, gdyż istnieją bardzo krótko i mają niski przekrój czynny, a więc istnieje niewielkie prawdopodobieństwo jego zarejestrowania. "Jądro zostało uzyskane w reakcji fuzji-ewaporacji, poprzez wzbudzenie celu ze srebra za pomocą strumienia jonów strontu-84", wyjaśnia Kalle Auranen.
      Badania, prowadzone przez Hennę Kekkonen, są częścią jej pracy doktorskiej i stanowią kontynuację badań, jakie prowadziła na potrzeby magisterki. Bardzo rzadko dochodzi do odkryć izotopów, a ja mam okazję po raz drugi przejść do historii, cieszy się młoda uczona. Każdy eksperyment to wyzwanie, ale to wspaniałe uczucie, gdy może prowadzić badania, które pozwalają nam lepiej zrozumieć materię i strukturę jądra atomowego, dodaje.
      Źródło: New proton emitter 188At implies an interaction unprecedented in heavy nuclei

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ziemia doświadczyła co najmniej 5 epizodów masowego wymierania. Przyczyny niektórych z nich, jak wymierania kredowego, kiedy wyginęły dinozaury, są znane. Co do innych wymierań, nie mamy takiej pewności. Od pewnego czasu pojawiają się głosy, że za przynajmniej jedno z wymierań odpowiedzialny był wybuch supernowej. Autorzy nowych badań uważają, że bliskie Ziemi supernowe już co najmniej dwukrotnie doprowadziły do wymierania gatunków. I nie mamy gwarancji, że sytuacja się nie powtórzy.
      Podczas eksplozji supernowej dochodzi do emisji olbrzymich ilości promieniowania ultrafioletowego, X czy gamma. Z badań przeprowadzonych w 2020 roku wiemy, że wybuch supernowej w odległości mniejszej niż 10 parseków (ok. 33 lata świetlne) od Ziemi, całkowicie zabiłby życie na naszej planecie. Za wymierania mogą więc odpowiadać wybuchy, do których doszło w odległości około 20 parseków (pc). Zginęłoby wówczas wiele gatunków, ale samo życie by przetrwało.
      Alexis L. Quintana z Uniwersytetu w Alicante oraz Nicholas J. Wright i Juan Martínez García z Keele University przyjrzeli się 24 706 gwiazdom OB znajdujących się w odległości 1 kiloparseka (kpc), czyli 3261 lat świetlnych od Słońca. Dzięki temu obliczyli tempo tworzenia się takich gwiazd, liczbę supernowych oraz liczbę supernowych bliskich Ziemi. Na podstawie tych obliczeń doszli do wniosku, że supernowe mogły odpowiadać za dwa masowe wymierania na Ziemi – ordowickie sprzed 438 milionów lat oraz dewońskie, do którego doszło 374 miliony lat temu.
      Autorzy wspomnianych badań z 2020 roku stwierdzili, że supernowa Typu II była odpowiedzialna z kryzys Hangenberg, końcowy epizod wymierania dewońskiego. Ich zdaniem, promieniowanie z wybuchu supernowej docierało do Ziemi przez 100 000 lat, doprowadziło do olbrzymiego zubożenia warstwy ozonowej i masowego wymierania.
      Quintana, Wright i García wyliczają, że do eksplozji supernowej w odległości 20 pc od Ziemi dochodzi raz na około 2,5 miliarda lat.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...