Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy z Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej wykorzystują tlenek grafenu i związki grafenopochodne do opracowania nowych materiałów zabezpieczających przed promieniowaniem podczerwonym. Projekt IR-GRAPH realizowali ze środków Narodowego Centrum Badań i Rozwoju.

Chcemy, żeby nasze materiały stanowiły barierę zarówno przed wpuszczaniem, jak i wypuszczaniem ciepła – mówi kierująca pracami dr inż. Marta Mazurkiewicz-Pawlicka. To kompozyty. Tworzymy je na bazie polimerów, obecnie dwóch rodzajów. Jako napełniacz stosujemy materiały grafenowe z dodatkiem tlenków metali, np. tlenku tytanu.

Takie połączenie gwarantuje skuteczne ekranowanie. Materiały grafenowe są dodawane w celu pochłonięcia promieniowania, a tlenki metali mają za zadanie je rozpraszać – wyjaśnia badaczka.

Konkurencyjny materiał

Na rynku są już dostępne np. folie na okna, które chronią przed promieniowaniem. Materiały opracowywane przez naukowców z Politechniki Warszawskiej mogą być jednak dla nich konkurencją. Żeby obniżyć temperaturę o kilka stopni Celsjusza, dodaje się tam około 5% napełniacza – tłumaczy dr Mazurkiewicz-Pawlicka. My podobne wyniki uzyskujemy przy dodaniu 0,1% napełniacza, czyli 50 razy mniej.

Na razie zespół skupia się jednak na samych materiałach, a nie konkretnych aplikacjach. Choć nietrudno wskazać potencjalne zastosowania, takie jak właśnie okna, ale też elewacje, a nawet tkaniny. Zimą takie materiały chroniłyby przed utratą ciepła, a latem przed nadmiernym nagrzaniem.

W przypadku budynków czy pojazdów mogłaby to być pewna alternatywa dla powszechnie dzisiaj stosowanej klimatyzacji. Jej używanie pochłania przecież mnóstwo energii. Im bardziej chcemy zmienić temperaturę w stosunku do tej naturalnej dla danego pomieszczenia, tym więcej energii potrzeba. Każde mniej energochłonne wsparcie oznaczałoby oszczędności w budżecie i korzyść dla środowiska.

Patrząc w przyszłość

Nasi naukowcy przeprowadzili badania krótkoterminowe. Ich wyniki są obiecujące, ale wiele kwestii wymaga jeszcze dokładniejszego sprawdzenia, m.in. zachowanie polimerów w promieniowaniu UV, podwyższonej temperaturze czy zmienionej wilgotności. Ważne jest przetestowanie dotychczasowych rozwiązań zarówno w różnych warunkach, jak i w dłuższym czasie. Badania takie można przeprowadzić przy użyciu komory klimatycznej, do której na kilka tygodni można wstawić próbkę materiału i ją obserwować.

Na przykład żeby wykorzystać nasze materiały w folii na okna musimy popracować nad barwą, bo obecna, w odcieniach szarości, ogranicza widzialność – mówi dr Mazurkiewicz-Pawlicka. Chcemy też znaleźć nowe polimery, które mogłyby zostać użyte jako osnowa w naszych materiałach.

Współpraca

Zespół dr Mazurkiewicz-Pawlickiej tworzyli dr hab. Leszek Stobiński, dr Artur Małolepszy oraz grupa studentów wykonujących w ramach projektu prace inżynierskie i magisterskie. Swoją cegiełkę dołożyli też członkowie Koła Naukowego Inżynierii Chemicznej i Procesowej. Zrobili urządzenie, które mierzy efektywność naszych folii – opowiada dr Mazurkiewicz-Pawlicka. Składa się z lampy emitującej promieniowanie podczerwone i czujnika, który mierzy, o ile stopni udało się obniżyć temperaturę.

W ramach IR-GRAPH naukowcy z PW ściśle współpracowali z Tatung University na Tajwanie. Korzystali także ze wsparcia Wydziału Fizyki Uniwersytetu Warszawskiego. Prof. Dariusz Wasik, Dziekan Wydziału i dr hab. Andrzej Witowski są specjalistami w fizyce ciała stałego i wykonali dla nas pomiary spektrometryczne – mówi dr Mazurkiewicz-Pawlicka.

Dlaczego ekranować podczerwień?

Grafen kojarzony jest przede wszystkim z zastosowaniami w elektronice i automatyce. Wykorzystanie go do ekranowania promieniowania nie jest jeszcze tak rozpowszechnione. Są doniesienia literaturowe, że grafen ekranuje promieniowanie elektromagnetyczne – opowiada dr Mazurkiewicz-Pawlicka. Jest to szeroko badane pod kątem promieniowania mikrofalowego, a ostatnio też terahercowego, głównie w zastosowaniach militarnych. Pomyśleliśmy, żeby sprawdzić właściwości grafenu dla promieniowania podczerwonego, bo na ten temat wiadomo niewiele.

Promieniowanie podczerwone charakteryzuje się długością fal między 780 nanometrów a 1 milimetr. Wspólnie ze światłem widzialnym i promieniowaniem UV tworzy spektrum promieniowania słonecznego. W nadmiarze ma ono negatywny wpływ na naszą skórę. A aż około 50% tego promieniowania, które dociera do powierzchni Ziemi, stanowi właśnie podczerwień (odczuwana w postaci ciepła). Dlatego tak ważne jest jej ekranowanie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W projektach związanych z syntezą termojądrową konieczne jest wykorzystanie materiałów odpornych na wysokie temperatury i uszkodzenia radiacyjne. Obiecujące pod tym względem są materiały bazujące na węglu, zwłaszcza nanorurki węglowe i grafen. Naukowcy z Zakładu Badań Reaktorowych NCBJ brali udział w badaniach odporności detektorów grafenowych na wysokie strumienie neutronów.

      Reaktory termojądrowe, takie jak powstające obecnie w Cadarache we Francji urządzenie badawcze ITER (International Thermonuclear Experimental Reactor), czy powstający w Hiszpanii jego następca – DEMO (Demonstration Power Plant), wykorzystują silne pole magnetyczne do uwięzienia plazmy, w której zachodzą reakcje syntezy lekkich jąder atomowych. By umożliwić efektywne zachodzenie reakcji syntezy, plazmę należy podgrzać do temperatury dziesiątek milionów stopni Celsjusza. Aby zapewnić stabilne działanie urządzenia, konieczna jest precyzyjna diagnostyka pola magnetycznego. Ze względu na działające na znajdującą się we wnętrzu reaktora elektronikę warunki, takie jak wysoka temperatura (rzędu kilkuset °C) czy silne promieniowanie neutronowe, większość komercyjnie dostępnych półprzewodnikowych czujników pola magnetycznego nie jest w stanie pracować w takich układach. Z tego powodu prowadzone są badania nad detektorami metalowymi, opartymi o chrom czy bizmut. Niestety, detektory oparte o nie mają niską czułość i duży przekrój czynny na oddziaływanie z neutronami.
      Interesującą alternatywą wydają się być detektory wykonane w technologii kwaziswobodnego grafenu epitaksjalnego na węgliku krzemu. Warstwy grafenu mogą być formowane w bardzo czułe sensory efektu Halla: jeżeli przewodnik, przez który płynie prąd elektryczny, znajduje się w polu magnetycznym, pojawia się w nim różnica potencjałów – tzw. napięcie Halla, które może posłużyć do pomiaru pola magnetycznego. Zbadana została już odporność grafenu na promieniowanie. Badania przeprowadzono wykorzystując zarówno wiązki jonów, protonów, jak i elektronów, i nie wykryto istotnych zmian właściwości napromienionych próbek. Przewidywania teoretyczne sugerują, że podobnie grafen reaguje na promieniowanie neutronowe, jednak nigdy wcześniej nie zostało to bezpośrednio potwierdzone eksperymentalnie.
      W pracy, która ukazała się na łamach czasopisma Applied Surface Science, zbadano wpływ prędkich neutronów na układ detektora opartego na grafenie. Instytut Mikroelektroniki i Fotoniki (IMiF) funkcjonujący w Sieci Badawczej Łukasiewicz wytworzył strukturę składającą się z grafenu na wysyconej atomami wodoru powierzchni węglika krzemu 4H-SiC(0001). Całość pokryto dielektryczną pasywacją z tlenku glinu, stanowiącą zabezpieczenie środowiskowe warstwy aktywnej detektora – mówi dr inż. Tymoteusz Ciuk, kierujący pracami w Łukasiewicz-IMiF. Tak przygotowany układ został następnie poddany napromienieniu neutronami prędkimi wewnątrz rdzenia reaktora MARIA w NCBJ.
      Zamontowana w rdzeniu reaktora MARIA unikatowa instalacja do napromieniania neutronami prędkimi pozwala nam przeprowadzać badania materiałów, bądź podzespołów przewidywanych do wykorzystania w układach termojądrowych, w których także są generowane prędkie neutrony – opowiada dr inż. Rafał Prokopowicz, kierownik Zakładu Badań Reaktorowych NCBJ, współautor pracy. W przypadku badań nad strukturami detekcyjnymi z grafenu, próbki napromienialiśmy przez ponad 120 godzin neutronami prędkimi o fluencji rzędu 1017 cm–2, by oddać warunki, na jakie narażona jest elektronika w instalacjach termojądrowych – dodaje mgr Maciej Ziemba z Zakładu Badań Reaktorowych. „Aby zapewnić bezpieczeństwo badań, testy podzespołów wykonano, gdy aktywność próbek nie stanowiła już zagrożenia, czyli po kilku miesiącach od napromienienia”.
      Zarówno przed napromienieniem, jak i po napromienieniu próbek, w Instytucie Fizyki Politechniki Poznańskiej dokładnie zbadano ich strukturę i właściwości elektryczne. Wykorzystano do tego spektroskopię Ramana, badania efektu Halla, jak również wielkoskalowe modelowanie z użyciem teorii funkcjonału gęstości (DFT – density functional theory). Dodatkowo, naukowcy z Politechniki Poznańskiej przeprowadzili charakteryzację napromienionych struktur po ich wygrzewaniu w temperaturze od 100 do 350°C, by zbadać działanie temperatury, w połączeniu z wpływem prędkich neutronów, na właściwości elektryczne. Dzięki testom wykryto na przykład, że z powodu promieniowania, w materiale pojawia się zależność właściwości elektrycznych od temperatury, która nie występowała przed umieszczeniem próbek w strumieniu neutronów – wyjaśnia dr inż. Semir El-Ahmar, kierujący badaniami na Politechnice Poznańskiej. Co więcej, promieniowanie neutronowe powoduje zmniejszenie gęstości nośników ładunku w badanej strukturze. Okazuje się jednak, że odpowiada za to warstwa wodoru, a więc napromienienie jedynie w umiarkowanym stopniu wpływa na strukturę i właściwości grafenu.
      Na podstawie charakteryzacji właściwości badanych struktur przed napromienieniem i po ich napromienieniu, oceniono odporność grafenu na promieniowanie neutronowe jako bardzo dobrą. Gęstość uszkodzeń radiacyjnych była 7 rzędów wielkości mniejsza, niż wartość strumienia neutronów, co oznacza dość niski przekrój czynny grafenu na oddziaływanie z neutronami prędkimi. Mimo, iż wystąpiły uszkodzenia struktury spowodowane promieniowaniem, to w porównaniu z detektorami bazującymi na metalach, czułość układu z grafenem na pole magnetyczne pozostaje kilka rzędów wielkości większa – podsumowuje wyniki dr El-Ahmar. Dodatkowo, okazało się, że duża część uszkodzeń była związana nie z samymi warstwami grafenu, a z warstwą wodoru, która z kolei przy temperaturach powyżej 200°C, jakie będą panować w instalacjach takich jak DEMO, wykazuje wręcz pewien potencjał samo-naprawczy. Z uwagi na to, grafenowe detektory pola magnetycznego mogą stanowić obiecujące struktury do wykorzystania w reaktorach termojądrowych.
      Nad zastosowaniem grafenu jako bazy przy detekcji pola magnetycznego w instalacjach termojądrowych prowadzone będą dalsze badania. Naukowcy rozważają wykorzystanie innego typu podłoża – np. 6H-SiC(0001), na którym formowana struktura może być bardziej odporna na promieniowanie neutronowe. Rozważane jest też zastąpienie warstwy wodoru buforową warstwą atomów węgla.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się.
      Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu.
      Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi.
      Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje.
      Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy.
      Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami.
      Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy uważają, że znaleźli potężne i unikatowe narzędzie do wykrywania ciemnej materii – egzoplanety. W opublikowanym przez siebie artykule naukowcy stwierdzają, że obecność ciemnej materii można wykryć, mierząc jej wpływ na temperaturę egzoplanet.
      Sądzimy, że istnieje 300 miliardów egzoplanet. Jeśli odkryjemy i przebadamy niewielki odsetek z nich, to zyskamy olbrzymią ilość informacji na temat ciemnej materii, stwierdził Juri Smironv z Ohio State University. Smirnov i Rebecca Lane ze SLAC National Accelerator Laboratory są autorami artykułu opublikowanego w Physical Review Letters.
      Uczony dodaje, że gdy ciemna materia zostaje przechwycona przez grawitację egzoplanet, jest wciągana do jądra planety, gdzie dochodzi do jej anihilacji, co wiąże się z uwolnieniem ciepła. Im więcej ciemnej materii, tym więcej ciepła jest w ten sposób emitowane. Ciepło to może zaś zostać zarejestrowane przez Teleskop Kosmiczny Jamesa Webba (James Webb Space Telescope – JWST), który ma zostać wystrzelony w październiku bieżącego roku. Jeśli egzoplanety będą wydzielały nadmiarowe ciepło związane z obecnością ciemnej materii, powinniśmy być w stanie to zauważyć, dodaje Smirnov.
      Zdaniem uczonych planety spoza Układu Słonecznego mogą być szczególnie pomocne w wykrywaniu lżejszej ciemnej materii, tej o niższej masie. Dotychczas nie prowadzono poszukiwań ciemnej materii w takich zakresach masy.
      Naukowcy uważają, że gęstość ciemnej materii rośnie w kierunku centrum Drogi Mlecznej. Jeśli to prawda, to powinniśmy zauważyć, że planety bliżej centrum galaktyki rozgrzewają się bardziej niż te na jej obrzeżach. Jeśli byśmy coś takiego zarejestrowali byłoby to niesamowite odkrycie. Wskazywałoby, że znaleźliśmy ciemną materię, mówi Smirnov.
      Smirnov i Lane proponują, by przyjrzeć się „gorącym Jowiszom” oraz brązowym karłom. To w tych obiektach najłatwiej będzie zauważyć nadmiarowe ciepło spowodowane obecnością ciemnej materii. Uczeni uważają też, że warto poszukać i badać swobodne planety, takie, które nie orbitują wokół gwiazd. W ich przypadku nadmiarowe ciepło powinno być jeszcze bardziej oczywistym sygnałem obecności ciemnej materii, gdyż nie dociera do nich energia z gwiazd macierzystych.
      Olbrzymią zaletą wykorzystania egzoplanet jako wykrywaczy ciemnej materii jest fakt, że nie potrzeba do tego nowych rodzajów urządzeń lub technologii czy przeprowadzania takich badań, jakich dotychczas nie wykonywano.
      Obecnie znamy ponad 4300 egzoplanet i niemal 6000 kandydatów na planety. W ciągu najbliższych lat misja Gaia, wysłana przez Europejską Agencję Kosmiczną, powinna wykryć dziesiątki tysięcy kolejnych egzoplanet. Będziemy więc mieli olbrzymią liczbę obiektów, które można badać w poszukiwaniu ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bariery MOSE, które mają chronić Wenecję przed powodziami, nie uchronią wielu cennych zabytków, w tym przede wszystkim Bazyliki Św. Marka. Na przeszkodzie stoją biznes i polityka.
      Równo miesiąc temu, 3 października, na Placu Św. Marka można było zobaczyć łzy w oczach wielu wenecjan. Podniesiono bariery i po raz pierwszy w historii wysoki przybór wody – acqua alta – nie zalała placu. Jeden z najbardziej znanych i wyjątkowych zabytków świata, Bazylika Św. Marka, bardzo często doświadcza powodzi. Standardowa acqua alta to przybór wody o około 80 centymetrów. Jeśli fala wyniesie 86 centymetrów, zaczyna zalewać kościół.
      Przed miesiącem można było jednak przejść przez Plac Św. Marka suchą stopą. Meteorolodzy zapowiadali acqua alta o wysokości 130 cm, w związku z czym po raz pierwszy w historii podniesiono bariery MOSE, by uchronić miasto. Jednak było to wyjątkowe wydarzenie. Zapadła bowiem decyzja, że – przynajmniej do końca 2021 roku – bariery będą unoszone tylko wówczas, gdy acqua alta będzie wynosiła co najmniej 130 cm. Oznacza to zalanie najniżej położonych części miasta, w tym Bazyliki Świętego Marka.
      Decyzję taką podjęto ze względu na obecność... portu. Gdy na początku października uniesiono MOSE do Wenecji nie mogło wpłynąć siedem statków, które przez około pięć godzin musiały czekać na opuszczenie barier. To wywołało protesty władz portu Marghera. Co prawda przez ostatnich 20 lat zarząd Porto Marghera twierdził, że ochrona miasta powinna mieć priorytet, jednak teraz robi wszystko, by jego interesy były ważniejsze.
      Tutaj dochodzimy do istotnych kwestii polityczno-biznesowych. Port Marghera wraz z portem przyjmującym wielkie wycieczkowce oraz portem w Chioggia jest ósmym największym portem Włoch. Zatrudnia on ponad 21 000 osób, a powiązanych z nim jest ponad 1200 różnych przedsiębiorstw. Port wytwarza 27% PKB prowincji, a jego związki gospodarcze sięgają daleko w głąb lądu. Tam zaś mieszka kilkukrotnie więcej wyborców, niż w samej Wenecji.
      Im częściej MOSE będą unoszone, tym większe będą opóźnienia statków wpływających do Porto Marghera. Ktoś będzie musiał za te opóźnienia zapłacić, a będzie to najpewniej właściciel ładunku, gdyż większość jednostek płynących do Marghery to masowce transportujące węgiel, żywność czy produkty petrochemiczne. Port, w którym są stałe wielogodzinne opóźnienia będzie tracił klientów. Stąd też sprzeciw dyrekcji portu wobec zbyt częstego podnoszenia barier.
      Długoterminowy plan mówi o podnoszeniu MOSE przy acqua alta wynoszącej 110 cm. To pewne ustępstwo ze strony portu, ale wciąż oznacza poświęcenie najniższych części miasta z Bazyliką włącznie.
      Oficjalny powód, dla którego ustanowiono taką granicę podnoszenia MOSE to blokowanie przez bariery przepływu wody. Działanie takie powoduje, że laguna zaczyna zamieniać się w bagnisty teren, ustaje przepływ tlenu, z laguny nie odpływają zanieczyszczenia.
      W 2018 roku w Wenecji mieliśmy do czynienia ze 121 przypadkami acqua alta o wysokości do 110 cm. Aby uchronić Bazylikę przed powodziami, MOSE musiałyby być podnoszone już przy acqua alta wynoszącymi 80-85 cm. To oznacza, że bariery wyjątkowo często utrudniałyby ruch statków i przepływ wody.
      Jednak nawet ustalenie granicy podnoszenia MOSE na 110 cm aqua alta nie gwarantuje przetrwania portu. IPCC przewiduje, że jeśli uda się powstrzymać globalne ocieplenie na poziomie 2 stopni Celsjusza ponad poziom sprzed epoki przemysłowej – a osiągnięcie tego celu jest coraz bardziej wątpliwe – co czeka nas podniesienie poziomu oceanów o 30-60 cm. Jeśli tak się stanie, to acqua alta powyżej 110 cm będzie nawiedzała Wenecję bardzo często. Jeśli zaś nie uda się powstrzymać globalnego ocieplenia, to poziom oceanów może wzrosnąć o 60-100 cm i przetrwanie Wenecji będzie stało pod znakiem zapytania.
      Wenecja to poważny problem finansowy i polityczny. Już pojawiają się głosy, że port w Marghera należy przenieść gdzie indziej, że w przyszłości do Wenecji powinny wpływać tylko małe jednostki, a już teraz należy myśleć o tym, co w przypadku, gdy bariery MOSE przestaną się sprawdzać. Ich projektant zapewnia, że będą działały do momentu, gdy poziom oceanu podniesie się o 60 centymetrów. Jak jak zatem uratować Wenecję, gdyby wzrost poziomu oceanu miał być większy?

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Akademii Górniczo-Hutniczej skonstruowali specjalną barierę orkiestronu (miejsca przeznaczonego dla orkiestry w operze lub teatrze) o regulowanej geometrii, która zapewnia lepszą słyszalność muzyki w sali, zwiększa komfort pracy muzyków oraz poszerza możliwości artystycznej ekspresji. Opatentowany wynalazek z AGH od roku służy Operze Krakowskiej.
      Bariera orkiestronu została podzielona na sekcje o szerokości ok. 120 cm, w których zamontowano panele refleksyjne w formie poziomych żaluzji. Odległości między panelami oraz ich kąt pochylenia są regulowane. Regulacja pozwala też na całkowite usunięcie paneli z pola sekcji. Przewidziano możliwość automatycznego napędu tego mechanizmu, który w przyszłych pracach pozwoli na inteligentne sterowanie położeniem żaluzji. Dzięki zastosowaniu elementów regulowanych mechanicznie można dostosować parametry akustyczne bariery do aktualnych potrzeb, np. rozmieszczenia muzyków w orkiestronie, rodzaju muzyki czy doboru scenografii.
      Zastosowanie wynalazku jest szczególnie cennym osiągnięciem z uwagi na uzyskanie zmiany jakości odbioru muzyki przez naturalne odbicia dźwięku, bez angażowania elektroakustycznego wspomagania. Modernizacja orkiestronu poprawiła akustyczną interakcję między sceną, orkiestrą i widownią. Obecnie trwają dalsze badania i analizy akustyczne nowego systemu, a bieżąca współpraca z zespołem Opery Krakowskiej pozwala na zgłębianie możliwości tego rozwiązania oraz weryfikację symulacji obliczeniowych.
      Proces wdrożenia innowacyjnej konstrukcji odbył się w sierpniu 2019 r., w ramach dofinansowanego ze środków Regionalnego Programu Operacyjnego projektu "Modernizacja technologii sceny Opery Krakowskiej". Warto wspomnieć, że w orkiestronie zastosowano już m.in. systemy rozpraszające dźwięk, które były przedmiotem wcześniejszych zgłoszeń patentowych naukowców z AGH.
      Nad poprzednimi oraz najnowszą konstrukcją pracowali naukowcy z Akademii Górniczo-Hutniczej pod kierownictwem dr. hab. inż. Tadeusza Kamisińskiego, prof. AGH z Katedry Mechaniki i Wibroakustyki na Wydziale Inżynierii Mechanicznej i Robotyki. Współpraca zespołu badaczy z AGH z Operą Krakowską trwa od momentu podjęcia budowy obiektu w 2007 r.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...