Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Naukowcy z Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej wykorzystują tlenek grafenu i związki grafenopochodne do opracowania nowych materiałów zabezpieczających przed promieniowaniem podczerwonym. Projekt IR-GRAPH realizowali ze środków Narodowego Centrum Badań i Rozwoju.

Chcemy, żeby nasze materiały stanowiły barierę zarówno przed wpuszczaniem, jak i wypuszczaniem ciepła – mówi kierująca pracami dr inż. Marta Mazurkiewicz-Pawlicka. To kompozyty. Tworzymy je na bazie polimerów, obecnie dwóch rodzajów. Jako napełniacz stosujemy materiały grafenowe z dodatkiem tlenków metali, np. tlenku tytanu.

Takie połączenie gwarantuje skuteczne ekranowanie. Materiały grafenowe są dodawane w celu pochłonięcia promieniowania, a tlenki metali mają za zadanie je rozpraszać – wyjaśnia badaczka.

Konkurencyjny materiał

Na rynku są już dostępne np. folie na okna, które chronią przed promieniowaniem. Materiały opracowywane przez naukowców z Politechniki Warszawskiej mogą być jednak dla nich konkurencją. Żeby obniżyć temperaturę o kilka stopni Celsjusza, dodaje się tam około 5% napełniacza – tłumaczy dr Mazurkiewicz-Pawlicka. My podobne wyniki uzyskujemy przy dodaniu 0,1% napełniacza, czyli 50 razy mniej.

Na razie zespół skupia się jednak na samych materiałach, a nie konkretnych aplikacjach. Choć nietrudno wskazać potencjalne zastosowania, takie jak właśnie okna, ale też elewacje, a nawet tkaniny. Zimą takie materiały chroniłyby przed utratą ciepła, a latem przed nadmiernym nagrzaniem.

W przypadku budynków czy pojazdów mogłaby to być pewna alternatywa dla powszechnie dzisiaj stosowanej klimatyzacji. Jej używanie pochłania przecież mnóstwo energii. Im bardziej chcemy zmienić temperaturę w stosunku do tej naturalnej dla danego pomieszczenia, tym więcej energii potrzeba. Każde mniej energochłonne wsparcie oznaczałoby oszczędności w budżecie i korzyść dla środowiska.

Patrząc w przyszłość

Nasi naukowcy przeprowadzili badania krótkoterminowe. Ich wyniki są obiecujące, ale wiele kwestii wymaga jeszcze dokładniejszego sprawdzenia, m.in. zachowanie polimerów w promieniowaniu UV, podwyższonej temperaturze czy zmienionej wilgotności. Ważne jest przetestowanie dotychczasowych rozwiązań zarówno w różnych warunkach, jak i w dłuższym czasie. Badania takie można przeprowadzić przy użyciu komory klimatycznej, do której na kilka tygodni można wstawić próbkę materiału i ją obserwować.

Na przykład żeby wykorzystać nasze materiały w folii na okna musimy popracować nad barwą, bo obecna, w odcieniach szarości, ogranicza widzialność – mówi dr Mazurkiewicz-Pawlicka. Chcemy też znaleźć nowe polimery, które mogłyby zostać użyte jako osnowa w naszych materiałach.

Współpraca

Zespół dr Mazurkiewicz-Pawlickiej tworzyli dr hab. Leszek Stobiński, dr Artur Małolepszy oraz grupa studentów wykonujących w ramach projektu prace inżynierskie i magisterskie. Swoją cegiełkę dołożyli też członkowie Koła Naukowego Inżynierii Chemicznej i Procesowej. Zrobili urządzenie, które mierzy efektywność naszych folii – opowiada dr Mazurkiewicz-Pawlicka. Składa się z lampy emitującej promieniowanie podczerwone i czujnika, który mierzy, o ile stopni udało się obniżyć temperaturę.

W ramach IR-GRAPH naukowcy z PW ściśle współpracowali z Tatung University na Tajwanie. Korzystali także ze wsparcia Wydziału Fizyki Uniwersytetu Warszawskiego. Prof. Dariusz Wasik, Dziekan Wydziału i dr hab. Andrzej Witowski są specjalistami w fizyce ciała stałego i wykonali dla nas pomiary spektrometryczne – mówi dr Mazurkiewicz-Pawlicka.

Dlaczego ekranować podczerwień?

Grafen kojarzony jest przede wszystkim z zastosowaniami w elektronice i automatyce. Wykorzystanie go do ekranowania promieniowania nie jest jeszcze tak rozpowszechnione. Są doniesienia literaturowe, że grafen ekranuje promieniowanie elektromagnetyczne – opowiada dr Mazurkiewicz-Pawlicka. Jest to szeroko badane pod kątem promieniowania mikrofalowego, a ostatnio też terahercowego, głównie w zastosowaniach militarnych. Pomyśleliśmy, żeby sprawdzić właściwości grafenu dla promieniowania podczerwonego, bo na ten temat wiadomo niewiele.

Promieniowanie podczerwone charakteryzuje się długością fal między 780 nanometrów a 1 milimetr. Wspólnie ze światłem widzialnym i promieniowaniem UV tworzy spektrum promieniowania słonecznego. W nadmiarze ma ono negatywny wpływ na naszą skórę. A aż około 50% tego promieniowania, które dociera do powierzchni Ziemi, stanowi właśnie podczerwień (odczuwana w postaci ciepła). Dlatego tak ważne jest jej ekranowanie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Bariery MOSE, które mają chronić Wenecję przed powodziami, nie uchronią wielu cennych zabytków, w tym przede wszystkim Bazyliki Św. Marka. Na przeszkodzie stoją biznes i polityka.
      Równo miesiąc temu, 3 października, na Placu Św. Marka można było zobaczyć łzy w oczach wielu wenecjan. Podniesiono bariery i po raz pierwszy w historii wysoki przybór wody – acqua alta – nie zalała placu. Jeden z najbardziej znanych i wyjątkowych zabytków świata, Bazylika Św. Marka, bardzo często doświadcza powodzi. Standardowa acqua alta to przybór wody o około 80 centymetrów. Jeśli fala wyniesie 86 centymetrów, zaczyna zalewać kościół.
      Przed miesiącem można było jednak przejść przez Plac Św. Marka suchą stopą. Meteorolodzy zapowiadali acqua alta o wysokości 130 cm, w związku z czym po raz pierwszy w historii podniesiono bariery MOSE, by uchronić miasto. Jednak było to wyjątkowe wydarzenie. Zapadła bowiem decyzja, że – przynajmniej do końca 2021 roku – bariery będą unoszone tylko wówczas, gdy acqua alta będzie wynosiła co najmniej 130 cm. Oznacza to zalanie najniżej położonych części miasta, w tym Bazyliki Świętego Marka.
      Decyzję taką podjęto ze względu na obecność... portu. Gdy na początku października uniesiono MOSE do Wenecji nie mogło wpłynąć siedem statków, które przez około pięć godzin musiały czekać na opuszczenie barier. To wywołało protesty władz portu Marghera. Co prawda przez ostatnich 20 lat zarząd Porto Marghera twierdził, że ochrona miasta powinna mieć priorytet, jednak teraz robi wszystko, by jego interesy były ważniejsze.
      Tutaj dochodzimy do istotnych kwestii polityczno-biznesowych. Port Marghera wraz z portem przyjmującym wielkie wycieczkowce oraz portem w Chioggia jest ósmym największym portem Włoch. Zatrudnia on ponad 21 000 osób, a powiązanych z nim jest ponad 1200 różnych przedsiębiorstw. Port wytwarza 27% PKB prowincji, a jego związki gospodarcze sięgają daleko w głąb lądu. Tam zaś mieszka kilkukrotnie więcej wyborców, niż w samej Wenecji.
      Im częściej MOSE będą unoszone, tym większe będą opóźnienia statków wpływających do Porto Marghera. Ktoś będzie musiał za te opóźnienia zapłacić, a będzie to najpewniej właściciel ładunku, gdyż większość jednostek płynących do Marghery to masowce transportujące węgiel, żywność czy produkty petrochemiczne. Port, w którym są stałe wielogodzinne opóźnienia będzie tracił klientów. Stąd też sprzeciw dyrekcji portu wobec zbyt częstego podnoszenia barier.
      Długoterminowy plan mówi o podnoszeniu MOSE przy acqua alta wynoszącej 110 cm. To pewne ustępstwo ze strony portu, ale wciąż oznacza poświęcenie najniższych części miasta z Bazyliką włącznie.
      Oficjalny powód, dla którego ustanowiono taką granicę podnoszenia MOSE to blokowanie przez bariery przepływu wody. Działanie takie powoduje, że laguna zaczyna zamieniać się w bagnisty teren, ustaje przepływ tlenu, z laguny nie odpływają zanieczyszczenia.
      W 2018 roku w Wenecji mieliśmy do czynienia ze 121 przypadkami acqua alta o wysokości do 110 cm. Aby uchronić Bazylikę przed powodziami, MOSE musiałyby być podnoszone już przy acqua alta wynoszącymi 80-85 cm. To oznacza, że bariery wyjątkowo często utrudniałyby ruch statków i przepływ wody.
      Jednak nawet ustalenie granicy podnoszenia MOSE na 110 cm aqua alta nie gwarantuje przetrwania portu. IPCC przewiduje, że jeśli uda się powstrzymać globalne ocieplenie na poziomie 2 stopni Celsjusza ponad poziom sprzed epoki przemysłowej – a osiągnięcie tego celu jest coraz bardziej wątpliwe – co czeka nas podniesienie poziomu oceanów o 30-60 cm. Jeśli tak się stanie, to acqua alta powyżej 110 cm będzie nawiedzała Wenecję bardzo często. Jeśli zaś nie uda się powstrzymać globalnego ocieplenia, to poziom oceanów może wzrosnąć o 60-100 cm i przetrwanie Wenecji będzie stało pod znakiem zapytania.
      Wenecja to poważny problem finansowy i polityczny. Już pojawiają się głosy, że port w Marghera należy przenieść gdzie indziej, że w przyszłości do Wenecji powinny wpływać tylko małe jednostki, a już teraz należy myśleć o tym, co w przypadku, gdy bariery MOSE przestaną się sprawdzać. Ich projektant zapewnia, że będą działały do momentu, gdy poziom oceanu podniesie się o 60 centymetrów. Jak jak zatem uratować Wenecję, gdyby wzrost poziomu oceanu miał być większy?

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Akademii Górniczo-Hutniczej skonstruowali specjalną barierę orkiestronu (miejsca przeznaczonego dla orkiestry w operze lub teatrze) o regulowanej geometrii, która zapewnia lepszą słyszalność muzyki w sali, zwiększa komfort pracy muzyków oraz poszerza możliwości artystycznej ekspresji. Opatentowany wynalazek z AGH od roku służy Operze Krakowskiej.
      Bariera orkiestronu została podzielona na sekcje o szerokości ok. 120 cm, w których zamontowano panele refleksyjne w formie poziomych żaluzji. Odległości między panelami oraz ich kąt pochylenia są regulowane. Regulacja pozwala też na całkowite usunięcie paneli z pola sekcji. Przewidziano możliwość automatycznego napędu tego mechanizmu, który w przyszłych pracach pozwoli na inteligentne sterowanie położeniem żaluzji. Dzięki zastosowaniu elementów regulowanych mechanicznie można dostosować parametry akustyczne bariery do aktualnych potrzeb, np. rozmieszczenia muzyków w orkiestronie, rodzaju muzyki czy doboru scenografii.
      Zastosowanie wynalazku jest szczególnie cennym osiągnięciem z uwagi na uzyskanie zmiany jakości odbioru muzyki przez naturalne odbicia dźwięku, bez angażowania elektroakustycznego wspomagania. Modernizacja orkiestronu poprawiła akustyczną interakcję między sceną, orkiestrą i widownią. Obecnie trwają dalsze badania i analizy akustyczne nowego systemu, a bieżąca współpraca z zespołem Opery Krakowskiej pozwala na zgłębianie możliwości tego rozwiązania oraz weryfikację symulacji obliczeniowych.
      Proces wdrożenia innowacyjnej konstrukcji odbył się w sierpniu 2019 r., w ramach dofinansowanego ze środków Regionalnego Programu Operacyjnego projektu "Modernizacja technologii sceny Opery Krakowskiej". Warto wspomnieć, że w orkiestronie zastosowano już m.in. systemy rozpraszające dźwięk, które były przedmiotem wcześniejszych zgłoszeń patentowych naukowców z AGH.
      Nad poprzednimi oraz najnowszą konstrukcją pracowali naukowcy z Akademii Górniczo-Hutniczej pod kierownictwem dr. hab. inż. Tadeusza Kamisińskiego, prof. AGH z Katedry Mechaniki i Wibroakustyki na Wydziale Inżynierii Mechanicznej i Robotyki. Współpraca zespołu badaczy z AGH z Operą Krakowską trwa od momentu podjęcia budowy obiektu w 2007 r.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińscy naukowcy uzyskali wysokiej jakości piankę grafenową z gazów odpadowych pochodzących z pirolizy odpadów organicznych. Chińczycy twierdzą, że ich metoda jest tańsza i bardziej przyjazna dla środowiska niż dotychczasowe sposoby wytwarzania pianki.
      Jak zapewnia Hong Jiang z Chińskiego Uniwersytetu Nauki i Technologi w Hefei, wyprodukowany materiał jest strukturalnie podobny do pianek grafenowych uzyskiwanych standardowymi metodami. Wykazuje on też podobne właściwości elektryczne i oraz równie dobrze absorbuje ciecze takie jak benzen czy parafina.
      Pianki grafenowe to trójwymiarowe wersje płaskich dwuwymiarowych płacht grafenu. Są one wytrzymałem, charakteryzują się dużym przewodnictwem elektrycznym, świetnie przewodzą ciepło. Mają wiele potencjalnych zastosowań. Mogą być używane do przechowywania energii, oczyszczania środowiska, przydadzą się chemikom, sprawdzą w roli bioczujników.
      Zwykle produkuje się je metodą osadzania z fazy gazowej. W metodzie tej gaz zawierający węgiel – np. metan – jest wprowadzany do podgrzanego metalowego substratu, zwykle jest nim pianka aluminiowa lub miedziana. Gdy gaz wchodzi w kontakt z substratem, dochodzi do osadzania się atomów węgla. Po zakończeniu reakcji metal jest wytrawiany i pozostaje grafenowa pianka.
      Osadzanie z fazy gazowej to metoda kosztowna, która wymaga użycia dużych ilości gazu. Dlatego też Jiang i jego zespół postanowili wykorzystać bogate w węgiel gazy z biorafinerii. W tego typu zakładach odpady organiczne są podgrzewane bez dostępu tlenu do temperatury 500 stopni Celsjusza lub wyższej. W procesie pirolizy powstaje biopaliwo.
      Chińczycy wykorzystali dwa składniki roślinne – sproszkowaną celulozę i sproszkowaną ligninę – które poddano pirolizie w temperaturze 800 stopni Celsjusza. Powstałe gazy zostały przefiltrowane, dzięki czemu oddzielono gazy o dużych molekułach. Następnie gazy o drobnych molekułach skierowano do komory osadzania z fazy gazowej, w której znajdowała się pianka aluminiowa. Uzyskany produkt przebadano za pomocą spektroskopii ramanowskiej i skaningowej mikroskopii elektronowej. Są dobrej jakości, nie widać w nich oczywistych defektów, mówi Jiang.
      Oczywiście sproszkowana celuloza i lignina są dalekie od standardowych odpadów organicznych. Dlatego też w kolejny etapie badań naukowcy wykorzystali słomę i trociny. Wyprodukowana z nich pianka grafenowa była nieco gorszej jakości niż ta z celulozy i ligniny. Jednak oba rodzaje miały jednorodną strukturę i świetne właściwości w zastosowaniach środowiskowych oraz do przechowywania energii. Zdaniem Jianga najlepszymi odpadami do produkcji pianek będą te zawierające dużo ligniny, celulozy i hemicelulozy. Jednak użyć można też innych materiałów. Oczywiście różne dodatki znajdujące się w takich odpadach wpłyną na skład pianki. Na przykład jeśli w odpadach będzie znajdowało się dużo azotu i siarki, to pierwiastki te mogą trafić też do pianki, wyjaśnia uczony.
      Edward Randviir z Manchester Metropolitan University, który nie brał udziału w opisywanych badaniach, mówi, że zwykle pianki grafenowe produkuje się za paliw kopalnych lub z czystego grafitu. Warto poszukać alternatyw dla tych materiałów, a Jiang i jego ludzie wykazali, że produkcja grafenu z biomasy jest możliwa. Jest też bardziej przyjazna środowisku i tańsza niż inne metody. Ten drugi element może jednak ulec zmianie. Grafen jest obecnie drogi, gdyż nie istnieją metody produkowania go na masową skalę. Jeśli się to zmieni, cena grafenu powinna spaść.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nie chcąc złapać kleszcza, lepiej nie brać ze sobą telefonu na piknik w parku czy bieganie po lesie. Najnowsze badania polsko-słowackie pokazują, że kleszcze - zwłaszcza będące nosicielami groźnych patogenów - są przyciągane przez promieniowanie elektromagnetyczne o częstotliwości 900 MHz.
      Od dziesięcioleci na obszarze Europy i nie tylko obserwuje się rozszerzanie zasięgu występowania wielu gatunków kleszczy. Spotyka się je nawet w samym środku dużych miast, gdzie na terenach zielonych czekają na ludzi i ich pupili.
      Za zwiększenie liczebności kleszczy odpowiadają przede wszystkim zmiany klimatu i przekształcanie krajobrazu. Z najnowszych badań zespołu polsko-słowackiego wynika jednak, że za rozszerzanie zasięgu występowania kleszczy może być też odpowiedzialne coraz powszechniejsze w środowisku promieniowanie elektromagnetyczne (EMF), którego źródłem są stacje radiowe, telewizyjne, telefonii komórkowej i liczne urządzenia mobilne - informuje Uniwersytet Przyrodniczy w Poznaniu.
      Wiele osób nie rozstaje się ze smartfonem i innymi urządzeniami elektronicznymi przez niemal całą dobę. Mało kto zdaje sobie jednak sprawę z tego, że emitowane przez nie EMF nie pozostaje obojętne dla organizmu - podkreślono w informacji przesłanej PAP.
      Jak przypomniano, dotychczas naukowcy odkryli negatywny wpływ promieniowania elektromagnetycznego na dziesiątki gatunków bakterii, zwierząt i roślin. EMF oddziałuje na komórki, jak i całe organizmy zwierząt i ludzi, powodując m.in. aktywację stresu oksydacyjnego, zmianę metabolizmu komórkowego, zakłócanie aktywności niektórych enzymów, zmianę odpowiedzi immunologicznych, wpływanie na ekspresję DNA oraz zakłócanie funkcji układu nerwowego, sercowo-naczyniowego i rozrodczego. Utworzono nawet określenie „zanieczyszczenie elektromagnetyczne”, mające podkreślać wszechobecność tego czynnika w środowisku i jego wpływ na organizmy.
      Najnowsze badania naukowe udowodniły, że pole elektromagnetyczne oddziałuje również na kleszcze, przyciągając je niczym magnes. Co ciekawsze, zakażenie niebezpiecznymi bakteriami sprawia, że EMF jest dla kleszczy jeszcze bardziej atrakcyjne. Wyniki badań na ten temat opublikowano właśnie w specjalistycznym czasopiśmie Ticks and Tick-borne Diseases. Pierwszą autorką pracy jest Martyna Frątczak, studentka weterynarii Uniwersytetu Przyrodniczego w Poznaniu. W jej powstanie było zaangażowanych osiem osób z sześciu instytucji naukowych (wspomniany Uniwersytet Przyrodniczy w Poznaniu, Uniwersytet Szczeciński i Uniwersytet Zielonogórski – po stronie polskiej, oraz Uniwersytet Szafarika, Uniwersytet Techniczny i Uniwersytet Weterynaryjny ze słowackich Koszyc).
      Badane zagadnienie jest niezwykle interdyscyplinarne, stąd niezbędna była współpraca przedstawicieli wielu dyscyplin: lekarzy weterynarii, parazytologów, inżynierów – elektryków i wreszcie biologów znających się na zaawansowanych statystykach – podsumował prof. Piotr Tryjanowski z UPP.
      Autorzy badań sprawdzali, jak EMF wpływa na zachowania kleszcza pospolitego Ixodes ricinus, znanego przede wszystkim z przenoszenia boreliozy (za co odpowiadają bakterie z rodzaju Borrelia), ale także riketsjozy (powodowana przez bakterie z rodzaju Rickettsia), czy odkleszczowego zapalenie mózgu (powodowane przez wirusy). Przeprowadzone analizy wykazały, że kleszcze są wręcz przyciągane przez promieniowanie o częstotliwości 900 MHz. To długość promieniowania standardowo wykorzystywana w większości urządzeń mobilnych, w tym smartfonach.
      Co jeszcze bardziej zaskakujące, w kierunku promieniowania EMF podążają chętniej kleszcze zainfekowane bakteriami z rodzajów Borrelia oraz Rickettsia – donoszą naukowcy.
      Dlaczego kleszcze w ogóle reagują na promieniowanie elektromagnetyczne? Najprawdopodobniej związane jest to z posiadaniem przez nie zmysłu magnetycznego – powszechnego w świecie zwierząt szóstego zmysłu, który wyewoluował w odpowiedzi na ziemskie siły pola geomagnetycznego. Sztuczne promieniowanie elektromagnetyczne może ten zmysł zaburzać i zwiększać ruchliwość kleszczy. Ponadto podejrzewa się, że naturalne promieniowanie elektromagnetyczne – które jest w pewnym, drobnym stopniu wytwarzane przez każdy żywy organizm – pomaga kleszczom wykrywać odpowiednich żywicieli – sugerują naukowcy. Nie wiadomo jednak, na ile mogłaby być to przydatna funkcja, kleszcze opierają się bowiem w wyborze żywiciela głównie na wskazówkach węchowych, wykrywając również wilgoć, ciepło i dwutlenek węgla nadchodzącego potencjalnego gospodarza.
      Sami autorzy badania przyznają, że kolejną zagadką jest wpływ bakterii, których nosicielami są kleszcze, na reakcję na promieniowanie elektromagnetyczne. Początkowo może się to wydawać absurdalne, warto jednak zauważyć, że kleszcze ko-ewoluują ze swoimi patogenami od tysięcy lat. Wiele patogenów kleszczy potrafi swoimi gospodarzami odpowiednio manipulować, zmieniając ich metabolizm, płodność, a nawet wpływać na preferencje środowiskowe. Najwidoczniej więc niektóre z nich wpływają na odpowiedź kleszczy na bodźce elektromagnetyczne - sprawiając, że kierują się do nich jeszcze chętniej, niż zazwyczaj – napisali.
      To z pewnością zła wiadomość dla osób nie rozstających się z telefonem nawet na łonie natury. Ale dobra dla tych, którzy twierdzą, że dla pełnego wypoczynku warto pozostawić telefon w domu czy samochodzie, a w lesie cieszyć się szumem drzew i śpiewem ptaków, nie zaś dźwiękiem przychodzących wiadomości – podsumowują autorzy badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do fotosyntezy potrzebne jest nie tylko światło, ale i ciepło - dowodzą naukowcy z Lublina. Rośliny odzyskują część ciepła, które powstaje w fotosyntezie, i używają go ponownie do zasilania reakcji napędzanych światłem, w tym – do produkcji tlenu – tłumaczy prof. Wiesław Gruszecki.
      Naukowcy mają nadzieję, że wiedzę dotyczącą gospodarowania strumieniami energii w aparacie fotosyntetycznym roślin uda się wykorzystać np. w rolnictwie, by zwiększyć plony.
      Energia niezbędna do podtrzymywania życia na Ziemi pochodzi z promieniowania słonecznego. Wykorzystanie tej energii możliwe jest dzięki fotosyntezie. W ramach fotosyntezy dochodzi do przetwarzania energii światła na energię wiązań chemicznych, która może być wykorzystana w reakcjach biochemicznych. W procesie tym rośliny rozkładają też wodę, wydzielając do atmosfery tlen, potrzebny nam do oddychania.
      Do tej pory sądzono, że w fotosyntezie rośliny korzystają tylko z kwantów światła. Zespół z Uniwersytetu Marii Curie-Skłodowskiej i Instytutu Agrofizyki PAN w Lublinie wskazał jednak dodatkowy mechanizm: do fotosyntezy potrzebna jest również energia cieplna, która - jak się wydawało - powstaje w tym procesie jako nieistotny skutek uboczny. Tymczasem z badań wynika, że ten „recykling energii” jest niezbędny w procesie wydajnego rozkładania wody do tlenu. Wyniki ukazały się w renomowanym czasopiśmie Journal of Physical Chemistry Letters.
      Wydajność energetyczna fotosyntezy jest niewielka – mówi w rozmowie z PAP prof. Wiesław Gruszecki z UMCS. Wyjaśnia, że roślina zamienia w biomasę najwyżej 6 proc. energii słonecznej, którą pobiera. Natomiast około 90 proc. energii pochłanianej ze światła jest oddawana do środowiska w postaci ciepła. Dotąd uważaliśmy, że frakcja oddawana do środowiska w postaci ciepła, z punktu widzenia wydajności energetycznej tego procesu, jest nieodwracalnie stracona. Ku naszemu zaskoczeniu okazało się jednak, że aparat fotosyntetyczny w roślinach jest na tyle sprytny, że potrafi jeszcze wykorzystywać część energii rozproszonej na ciepło – mówi.
      Naukowiec podkreśla, że są to badania podstawowe. Jego zdaniem mają one jednak szansę znaleźć zastosowanie choćby w rolnictwie.
      Jeśli procesy produkcji żywności się nie zmienią, to w połowie XXI wieku, kiedy Ziemię może zamieszkiwać nawet ponad 9 mld ludzi, nie starczy dla wszystkich jedzenia, tym bardziej przy niepokojących zmianach klimatycznych – alarmuje naukowiec. Badania jego zespołu są częścią międzynarodowych działań naukowców. Badają oni, co reguluje przepływy i wiązanie energii w procesie fotosyntezy. W powszechnym przekonaniu wiedza ta umożliwi inżynierię bądź selekcję gatunków roślin, które dawać będą większe plony.
      Gdyby produkować rośliny, w których ścieżka odzyskiwania energii cieplnej będzie jeszcze sprawniejsza – uważa badacz – to fotosynteza przebiegać będzie efektywniej, a roślina produkować będzie więcej biomasy. To zaś przekłada się bezpośrednio na większe plony.
      Zdaniem prof. Gruszeckiego kolejnym miejscem, gdzie można zastosować nową wiedzę, jest produkcja urządzeń do sztucznej fotosyntezy. Prace nad nimi trwają już w różnych miejscach na Ziemi, również w Polsce.
      Naukowiec wyjaśnia, na czym polegało odkrycie jego zespołu. Z badań wynika, że wśród struktur w chloroplastach, w których zachodzi fotosynteza, znajdują się kompleksy barwnikowo-białkowe. Pełnią one funkcję anten zbierających światło. Okazuje się, że kompleksy te grupują się spontanicznie w struktury zdolne do recyklingu energii rozproszonej w postaci ciepła. Anteny te przekazują również energię wzbudzenia uzyskaną z ciepła do centrów fotosyntetycznych, w których zachodzą reakcje rozszczepienia ładunku elektrycznego (w szczególności do Fotosystemu II). Proces ten wpływa na wzrost wydajności energetycznej fotosyntezy. I umożliwia wykorzystanie w tym procesie promieniowania o niższej energii (również z obszaru bliskiej podczerwieni). Wydaje się mieć to szczególne znaczenie w warunkach niskiej intensywności światła słonecznego.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...