Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Hipopotamy pełnią w ekosystemie ważną funkcję "pompy krzemowej"

Recommended Posts

Ekskrementy hipopotamów odgrywają ważną rolę w ekosystemach afrykańskich rzek i jezior. Ponieważ hipopotamów jest coraz mniej, ekosystemy również są zagrożone. W dłuższej perspektywie czasowej może to doprowadzić do katastrofy np. w Jeziorze Wiktorii.

Jak tłumaczą naukowcy z międzynarodowego zespołu, hipopotamy prowadzą unikatowy tryb życia. Nocą zjadają na sawannie dziesiątki kilogramów świeżej trawy, za dnia większość czasu spędzają, polegując w rzekach czy jeziorach. Chronią się w ten sposób przed drapieżnikami i palącymi promieniami słońca. Podczas chłodzenia w wodzie trawią i wydalają olbrzymie ilości kału.

Hipopotamy różnią się od innych dużych roślinożerców z sawanny. Składniki odżywcze z odchodów innych pasących się zwierząt przeważnie ponownie kończą na sawannie, gdzie są reabsorbowane przez rośliny. W przypadku hipopotamów tak się jednak nie dzieje: działają one jak swego rodzaju pompa, przekierowująca składniki odżywcze z lądu do jezior i rzek - opowiada Jonas Schoelynck z Uniwersytetu w Antwerpii.

Schoelynck, Patrick Frings z GFZ Helmholtz Centre Potsdam i inni wykazali, że ta funkcja pompująca jest kluczowa dla życia w wodzie.

Trawa, którą jedzą hipopotamy, zawiera krzem absorbowany z wód gruntowych. Pierwiastek ten zapewnia wytrzymałość, a także chroni przed chorobami oraz, w pewnym zakresie, przed żerowaniem przez mniejsze zwierzęta - wyjaśnia Schoelynck.

Analiza izotopowa [oraz pomiar stężeń Si] pozwoliła nam zrekonstruować szlak transportu krzemu [ang. downstream Si flux] - tłumaczy Frings.

Okazało się, że duża część krzemu w rzece Mara była tam transportowana przez hipopotamy. W badanym obszarze na terenie południowo-zachodniej Kenii pasące się zwierzęta absorbowały ze zjadanych roślin 800 kg krzemu dziennie; z odchodami hipopotamów do rzeki trafiało 400 kg. Naukowcy wyliczyli, że wkład hipopotamów to nawet 76% ogólnego transportu krzemu w rzece Mara. W pewnych rejonach hipopotamy odgrywają więc kluczową rolę w biogeochemicznym obiegu tego pierwiastka.

Nasze wyniki to całkowite novum. Dotąd nikt nie zakładał, że pasące się dzikie zwierzęta mogą mieć tak duży wpływ na transport krzemu z lądu do jezior.

Autorzy raportu z pisma Science Advances podkreślają, że krzem jest niezbędny dla pewnych organizmów, np. dla okrzemek, które produkują tlen i stanowią podstawę wielu łańcuchów pokarmowych.

W ostatnich latach liczebność hipopotamów w Afryce drastycznie spadła wskutek utarty habitatu i polowań. Przez to ich "funkcja pompująca" została częściowo utracona. Jezioro Wiktorii, do którego wpada rzeka Mara, może przetrwać na obecnych dostawach krzemu do kilkudziesięciu lat. W dłuższej perspektywie stanie się to jednak prawdopodobnie problemem. Jeśli okrzemki nie będą miały zapewnionych wystarczających ilości Si, zostaną zastąpione glonami-szkodnikami. Konsekwencją będą niedobór tlenu i śnięcie ryb, a rybołówstwo to ważne źródło dochodu mieszkańców okolic jeziora Wiktorii.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Jaki powinien być panel słoneczny marzeń? Efektywny, tani w produkcji, trwały, giętki i przyjazny środowisku. Wszystko to mogą dać perowskity: nowy materiał, który oferuje efektywność energetyczną porównywalną z panelami krzemowymi, ale jest o wiele tańszy i prostszy do wyprodukowania. Nowe badania prowadzone w IChF PAN we współpracy ze szwajcarskim EPFL przybliżają nas do komercjalizacji tej technologii.
      Chciałbyś podładować telefon w trakcie wędrówki po górach? A może zostać prosumentem, tyle że... nie masz dachu, na którym dałoby się zainstalować słoneczne panele? Jeśli chwilę poczekasz, twoje marzenia mogą się spełnić dzięki perowskitom. Metalohalogenki perowskitów od kilku lat stają się wiodącym kandydatem na najbardziej ekonomiczny materiał, głównie w dziedzinie energii odnawialnej, a konkretnie – paneli słonecznych. To, co dziś widujemy na dachach czy w specjalnych instalacjach fotowoltaicznych, to panele krzemowe. Są dość grube, sztywne, a do ich wyprodukowania potrzeba długiego czasu, bardzo wysokich temperatur i skomplikowanych technologii. Jednym słowem – dużo pieniędzy. Tymczasem perowskity są proste i tanie w produkcji, a ich synteza nie wymaga skomplikowanej i drogiej aparatury.
      Perowskit oferuje przy tym wydajność energetyczną porównywalną z krzemem (tu mimo ponad 40 lat badań i rozwoju wciąż nie przekracza ona 27%), a rekordy są wciąż śrubowane. W początkach badań nad tym materiałem, w 2009 roku, wydajność perowskitu wynosiła 3,9%. Dekadę później – już 24,2% - objaśnia Rashmi Runjhun. Potencjalnie może sięgnąć 31%, a dzięki architekturze tandemowej – nawet więcej - dodaje badaczka, a przecież wszyscy dziś stawiają na wydajność. Zdaniem Runjhun, właśnie dlatego perowskity mają wielki potencjał przemysłowy. Wystarczy wziąć parę stosunkowo dostępnych chemicznych związków, wymieszać je w roztworze i nanieść na podłoże. Doktorantka programu NaMeS ma nadzieję, że w niedalekiej przyszłości dzięki badaniom jej i innych zespołów, perowskitowe warstwy światłoczułe będzie można nanosić na różne, w tym elastyczne i giętkie, powierzchnie. Np. na zróżnicowane geometrycznie powierzchnie ścian, dachów czy... ubrania. Być może powstaną nawet farby ścienne generujące energię.
      Z pewnością pomogą w tym badania prowadzone w IChF PAN we współpracy ze szwajcarskim EPFL. Dzięki niewielkiej zmianie składu roztworu udało się podnieść jego energetyczną wydajność z 15% do ponad 20%. To efekt zarówno większych ziaren warstwy aktywnej, jak i lepszej separacji ładunków. Niejako "przy okazji" zespołowi badawczemu udało się też wydłużyć czas życia perowskitowych paneli i zwiększyć ich stabilność. Wyniki opublikowano niedawno w Chemistry of Materials.
      Wyzwania? Sprawić, by nowe, perowskitowe, panele słoneczne były bardziej przyjazne środowisku; na razie bowiem materiał opiera się na toksycznym ołowiu - dodaje szef projektu, prof. Janusz Lewiński. A jaki jest idealny panel słoneczny z marzeń Rashmi Runjhun? Powinien być, rzecz jasna, wydajny – mówi doktorantka. Poza tym tani w produkcji, stabilny (przynajmniej 10 lat dobrej aktywności) i przyjazny środowisku. No i oczywiście giętki. Taki, żeby np. można było nanosić fotowoltaiczną warstwę na tkaniny. Już nigdy nie groziłby nam urlop pod namiotem bez prądu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do smarowania sań wykorzystywanych do transportu głazów do budowy Stonehenge mógł być wykorzystywany świński tłuszcz (łój) - sugeruje nowa analiza przeprowadzona przez archeologów z Uniwersytetu w Newcastle.
      Przez długi czas resztki tłuszczu z fragmentów ceramiki z Durrington Walls w pobliżu Stonehenge łączono z koniecznością wyżywienia setek osób, które przybyły często z daleka, by pomóc w budowie megalitu.
      Analiza przeprowadzona przez autorów raportu z pisma Antiquity sugeruje, że skoro fragmenty pochodziły z naczyń o rozmiarach i kształcie wiader, a nie naczyń do gotowania czy podawania, mogły one służyć do zbierania i przechowywania łoju.
      Chciałam zdobyć więcej informacji, skąd taka ilość świńskiego tłuszczu w ceramice, skoro zwierzęce kości wydobyte ze stanowiska pokazują, że wiele świń upieczono na rożnie, a nie poćwiartowano, jak można by się spodziewać w przypadku gotowania w garnku - podkreśla dr Lisa-Marie Shillito.
      Obecnie powszechnie akceptowane jest wyjaśnienie, że megality takie jak Stonehenge wybudowano dzięki zbiorowemu wysiłkowi. Ostatnie eksperymenty sugerowały, że głazy o długości do 8 m i wadze do 2 ton mogły być transportowane przez 20 ludzi, którzy umieszczali je na saniach ciągniętych po balach.
      Należąca do stylu Grooved Ware ceramika z Durrington Walls jest świetnie zbadana pod kątem resztek organicznych. W ramach różnych projektów, w tym Feeding Stonehenge Project dr Shillito, zajmowano się ponad 300 fragmentami naczyń.
      Archeolodzy podkreślają, że choć założenie o powiązaniach między zwierzęcym tłuszczem wchłoniętym przez naczynie a gotowaniem i ucztowaniem silnie wpłynęło na wstępne interpretacje, w grę wchodzą też [przecież] inne procesy i zastosowania, a wtedy resztki tłuszczu mogą być uznane za kuszący dowód na potwierdzenie koncepcji smarowanych sań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pluskwiaki Podisus maculiventris wytwarzają antybiotyk zwany tanatyną, który zaburza proces powstawania zewnętrznej błony komórkowej bakterii Gram-ujemnych. Naukowcy z Uniwersytetu w Zurychu odkryli, że dzieje się tak dzięki nieznanemu dotąd mechanizmowi. Wg Szwajcarów, można i należy go wykorzystać do opracowania nowej klasy leków.
      W dobie narastającej lekooporności jednym z największych wyzwań pozostaje zidentyfikowanie nowych mechanizmów, działających na niebezpieczne bakterie Gram-ujemne. Do grupy tej należą, m.in.: pałeczki ropy błękitnej (Pseudomonas aeruginosa), które wywołują zagrażające życiu infekcje płuc czy różne szczepy pałeczek okrężnicy (Escherichia coli).
      Połączony zespół akademików z Uniwersytetu i Politechniki Federalnej w Zurychu (ETHZ) odkrył ostatnio, że tanatyna nie dopuszcza do tworzenia zewnętrznej błony bakterii Gram-ujemnych (błona ta blokuje potencjalnie toksycznym cząsteczkom dostęp do komórki).
      Za pomocą najnowocześniejszych metod Szwajcarzy stwierdzili, że tanatyna zaburza transport lipopolisacharydów (LPS) do zewnętrznej błony. Zwykle szlak transportowy składa się z superstruktury 7 białek, które tworzą pomost rozciągający się od błony wewnętrznej, przez peryplazmę, po błonę zewnętrzną (ścianę komórkową). Dzięki pomostowi LPS dostają się do powierzchni komórki, gdzie stają się ważną częścią błony zewnętrznej. Tanatyna hamuje jednak interakcje białkowe konieczne do powstania pomostu. Przez to lipopolisacharydy nie mają jak dotrzeć do celu i biogeneza całej ściany komórkowej zostaje zahamowana. Jak można się domyślić, dla bakterii jest to zjawisko śmiertelne.
      To nieznany dotąd mechanizm działania antybiotycznego [...] - podkreśla John A. Robinson z Uniwersytetu w Zurychu.
      Mechanizm, który opisano na łamach Science Advances, jest już wykorzystywany przez firmę Polyphor AG do opracowania substancji nadających się na leki. Mają one blokować interakcje białkowe w komórkach bakteryjnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ludzkich odchodach znaleziono mikroplastik, co sugeruje, że jest on rozpowszechniony na samym szczycie łańcucha pokarmowego.
      Austriaccy naukowcy monitorowali osiem osób z Polski, Rosji, Japonii, Holandii, Finlandii, Włoch, Wielkiej Brytanii i Austrii. W kale każdej z nich znaleziono co najmniej jeden rodzaj mikroplastiku. W sumie wyizolowano 9 różnych rodzajów mikroplastiku o rozmiarach od 50 do 500 mikrometrów.
      Mikroplastik, czyli niewielkie cząstki plastiku o rozmiarach mniejszych niż 5 milimetrów, pochodzi głównie z dużych odpadów plastikowych – takich jak butelki czy torby foliowe – którymi zanieczyściliśmy oceany.
      To pierwsze badania tego typu. Potwierdzają one to, co podejrzewaliśmy – plastik trafił do przewodów pokarmowych ludzi. Szczególnie martwi na to, co to oznacza i jakie ma to skutki dla ludzkiego zdrowia, szczególnie dla osób, cierpiących na choroby układu pokarmowego, mówi główny autor badań, Philipp Schwabl z Wiedeńskiego Uniwersytetu Medycznego. Wiadomo, że mikroplastik może przenikać do krwi, układu limfatycznego i wątroby. Naukowcy spekulują, że ponad 50% ludzkiej populacji może nieświadomie żywić się plastikiem. Wzywają jednocześnie do przeprowadzenia kolejnych badań, gdyż sami przyjrzeli się niewielkiej grupie ludzi.
      Mikroplastik obecny jest między innymi w rybach, owocach morza, piwie, miodzie i wodzie butelkowanej.
      U badanych znaleziono średnio 20 kawałków mikroplastiku na każde 10 gramow badanego kału. Najbardziej rozpowszechnione były polipropylen (PP) i poli(tereftalan etylenu) (PET). To materiały, z których składają się plastikowe butelki i zakrętki. Znaleziono je u wszystkich badanych.
      Poziom zanieczyszczenia oceanów plastikiem jest gigantyczny. Niedawno informowaliśmy, że coraz więcej plastikowych śmieci dociera do najbardziej odległych zakątków kuli ziemskiej. Światowe Forum Ekonomiczne szacuje, że do roku 2050 w oceanach będzie znajdowało się, wagowo, więcej plastiku niż ryb. Każdego roku zanieczyszczamy oceany 8 milionami ton plastikowych odpadów. Już teraz znajduje się w nich 150 milionów ton plastiku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Elon Musk zapowiedział na Twitterze, że pierwszy tunel Hyperloop, superszybkiego systemu transportu, zostanie otwarty 10 grudnia w Los Angeles. Otwarcie ma odbyć się w nocy, a następnego dnia chętni będą mogli spróbować bezpłatnej przejażdżki. W innym wpisie Musk stwierdził, że w testowym tunelu można rozwinąć prędkość do 250 km/h.
      Zwolennicy nowatorskiej technologii mówią, że dzięki niej podróż pomiędzy Los Angeles a San Francisco może trwać 30 minut. Obecnie trwa on 5–6 godzin.
      Hyperloop to rodzaj pociągu, który porusza się na poduszce magnetycznej w specjalnym tunelu, w którym zmniejszono ilość powietrza. Dzięki temu teoretycznie pojazd może podróżować szybciej od prędkości dźwięku. W najbliższym czasie nie osiągniemy jednak takich prędkości.
      W maju podczas prezentacji technologii Musk mówił, że dzięki niej podróż między centrum LA a lotniskiem potrwa 10 minut. Długoterminowym celem jest osiągnięci prędkości ponad 480 km/h.
      Hyperloop to jedno z flagowych przedsięwzięć Muska. Dwa pozostałe to SpaceX i Tesla Motors.
      Musk nie jest jedynym przedsiębiorcą, który inwestuje w tę technologię. Richard Branson, który również rozwija technologie kosmiczne, zainwestował w prowadzącą testy w Newadzie firmę Virgin Hyperloop One oraz w centrum badawcze w Hiszpanii.
      Z kolei kanadyjska firma Transpod pracuje nad rozpoczęciem testów Hyperloop we Francji.

      « powrót do artykułu
×
×
  • Create New...