Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Polacy współautorami odpornego materiału do reaktorów syntezy termojądrowej

Recommended Posts

Naukowcy, a wśród nich Polacy, opracowali nowy, bardzo odporny na promieniowanie materiał. Może on zrewolucjonizować projektowanie elementów konstrukcyjnych w reaktorach syntezy termojądrowej.

W pracach międzynarodowego zespołu, których wyniki przedstawiono w prestiżowym czasopiśmie Science Advances, uczestniczyła grupa ekspertów pod kierunkiem dra inż. Jana Wróbla z Politechniki Warszawskiej. Prace polskich badaczy sfinansowane zostały z programu HOMING Fundacji na rzecz Nauki Polskiej (FNP).

Naukowcy mierzyli się z jednym z głównych problemów technologicznych związanych z energetyką jądrową. Polega on na tym, że materiały konstrukcyjne pod wpływem napromieniowania ulegają niszczeniu. Rozwiązaniem problemu może być zastosowanie tzw. stopów o wysokiej entropii, czyli o dużym stopniu nieuporządkowania atomów. Jest to nowa klasa materiałów, składających się z czterech lub więcej składników o podobnym stężeniu. Stopione ze sobą składniki mają wyjątkową mikrostrukturę i unikalne właściwości – czytamy w informacji przesłanej PAP przez FNP.

Jak wynika z najnowszych badań opublikowanych w czasopiśmie Science Advances, stop o wysokiej entropii W-Ta-Cr-V (wolfram, tantal, chrom, wanad) jest niezwykle odporny na promieniowanie i zachowuje znakomite właściwości mechaniczne. Z tego względu materiał ten jest atrakcyjnym kandydatem do zastosowań w elementach konstrukcyjnych przyszłych reaktorów jądrowych lub syntezy termojądrowej.

Publikacja jest efektem międzynarodowej współpracy naukowców z Wydziału Inżynierii Materiałowej Politechniki Warszawskiej z naukowcami z Los Alamos National Laboratory, Argonne National Laboratory i Pacific Northwest National Laboratory w USA oraz z Culham Centre for Fusion Energy w Anglii.

Badacze próbowali zrozumieć, w jaki sposób uporządkowanie atomowe oraz podstawowe właściwości stopów zależą od stężeń poszczególnych pierwiastków oraz od temperatury. Grupa dr. inż. Jana Wróbla wyjaśniła, dlaczego w stopie wydzielają się fazy o zwiększonej zawartości atomów wanadu i chromu.

Ze względu na olbrzymią liczbę możliwych kombinacji, zarówno doboru pierwiastków jak i ich stężeń, eksperymentalne przebadanie wszystkich kombinacji stopów nie było możliwe. Dlatego polscy naukowcy stworzyli model teoretyczny. Połączył on metody obliczeniowe oparte na mechanice kwantowej z metodami statystycznymi.

Stworzony przez mój zespół model (...) wykazał, że w stopie W-Ta-Cr-V występuje silna tendencja do przyciągania pomiędzy atomami V i Cr, które jest przyczyną wydzielania faz V-Cr obserwowanych eksperymentalnie przez naszych współpracowników z USA. Co więcej, symulacje komputerowe przeprowadzane systematycznie w szerokim zakresie stężeń i temperatur mogą się przyczynić do znalezienia optymalnego składu stopu, który potencjalnie może mieć jeszcze lepsze właściwości niż ten opisany w naszej publikacji – mówi dr Wróbel.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Melson – konstrukcja Koła Naukowego Robotyków KNR działającego przy Wydziale Mechanicznym Energetyki i Lotnictwa Politechniki Warszawskiej z sukcesami zakończył swój udział w zawodach International Robotic Competition RoboChallenge 2019 w Rumunii (1-3 listopada 2019). Robot zajął pierwsze miejsce w kategorii Humanoid Robot, drugie miejsce w kategorii Humanoid Sumo oraz został wyróżniony w kategorii Freestyle Showcase.
      Konkurencja Humanoid Robot składała się z dwóch części. Roboty musiały wejść na schody składające się z trzech stopni oraz przejść tor z postawionymi na nim przeszkodami. Melson bez problemu wykonał pierwszą część zadania. W drugiej także poradził sobie świetnie – bezbłędnie omijał przeszkody na swoim torze, utrzymując przy tym poprawny toru ruchu. Zwycięstwo w tej kategorii smakuje wyjątkowo, bo robot naszych studentów jako jedyny był skonstruowany i oprogramowany przez samych zawodników – uczestników zawodów.
      W konkurencji Humanoid Sumo dwa roboty umieszczane są na dużym ringu (dohyo). Ich zadaniem jest przewrócenie przeciwnika. Roboty są w pełni autonomiczne i lokalizują przeciwnika na podstawie odczytów z czujników. Za przewrócenie rywala robot otrzymuje punkt, a w gdy ten nie wstanie przez 10 sekund, następuje knock-out. Roboty głównie wyprowadzały ciosy, padając do przodu swoim „ciałem”, licząc, że to wywróci przeciwnika – opowiada Kornelia Łukojć. Jedynie Melson walczył, stosując typowe ruchy bokserskie, które przewracały rywali. Ostatecznie nasz robot zajął drugie miejsce, ale finał był najbardziej emocjonującą walką w tej konkurencji.
      Kategoria Freestyle Showcase to rywalizacja, w której liczy się pomysłowość i innowacyjność. Ocenie podlegają prezentacja i dokumentacja projektu. Wyróżnienie dla Melsona w tej konkurencji to kolejne potwierdzenie inżynierskich umiejętności jego twórców.
      Zawody RoboChallenge to największe zawody robotów organizowane w Europie i jedne z największych na świecie. W tegorocznej edycji wzięły udział 158 zespoły z 17 krajów, w tym 615 uczestników i 533 roboty startujące w 14 konkurencjach.
      Zespół Melsona: Maksymilian Szumowski (twórca), Kacper Mikołajczyk (koordynator), Bartosz Bok, Dominik Górczynski, Kornelia Łukojć, Jerzy Piwkowski, Przemysław Płoński, Patryk Saffer, Jakub Soboń, Larysa Zaremba, Paweł Żakieta, Karol Niemczycki

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      National Ignition Facility, najpotężniejszy na świecie zespół laserów, pobił swój kolejny rekord. Tym razem lasery dostarczyły do celu 2,15 megadżula energii. To o 15% więcej niż przewiduje specyfikacja NIF oraz ponad 10% więcej niż dotychczasowy rekord wynoszący 1,9 MJ, który ustanowiono w marcu 2012 roku.
      Użytkownicy NIF zawsze proszą nas o więcej energii do ich eksperymentów, gdyż im więcej energii, tym lepsze wyniki badań. Ostatnie osiągnięcie to ważny krok w kierunku zwiększania możliwości NIF. To pokazuje, że możemy pracować z wyższymi energiami niż przewidywano podczas projektowania NIF, mówi dyrektor Mark Herrmann.
      Celem ostatnich prac było przekonanie się, jak dużą ilość energii można uzyskać za pomocą obecnie zinstalowanego sprzętu i optyki. Maksymalizacja mocy NIF ma zasadnicze znaczenie dla głównego celu, dla którego ośrodek ten został powołany – badań nad fuzją jądrową.
      Ośrodek wykorzystuje 192 lasery i dziesiątki tysięcy komponentów optycznych, takich jak soczewki, lustra i kryształy. To jedne z najdoskonalszych elementów tego typu, jakie kiedykolwiek powstały. Prowadzone badania mają posłużyć też m.in. dalszemu udoskonalaniu elementów optycznych.
      NIF już zapisał się w historii nauki, jako pierwszy system, który dostarczył więcej niż megadżul energii. Teraz przekroczono barierę dwóch megadżuli.
      NIF ma jednak nie tylko rozpocząć epokę kontrolowanej reakcji termonuklearnej. Zakład posłuży do badań nad bronią jądrową. Stany Zjednoczone od ponad 20 lat nie wyprodukowały żadnej nowej głowicy jądrowej, a od 1992 roku nie przeprowadziły żadnej podziemnej próby z bronią jądrową. NIF pozwoli zachować starzejący się arsenał w dobrym stanie. W końcu trzecim z zadań National Ignition Facility będzie umożliwienie naukowcom badania tego, co dzieje się wewnątrz gwiazd.

      « powrót do artykułu
×
×
  • Create New...