Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Akcelerator ILC jednak nie powstanie?
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Nasza rodaczka, pochodząca z Gdańska kapitan Martyna Graban, i załoga okrętu badawczego Nautilus, na którym Graban jest I oficerem, odkryli wrak japońskiego niszczyciela Teruzuki (pol. Świecący Księżyc). Wrak został znaleziony na głębokości ponad 800 metrów u wybrzeży Guadalcanal, jednej z Wysp Salomona. Na jego ślad wpadł najpierw bezzałogowy nawodny pojazd DriX należący do University of New Hampshire, który prowadził zaawansowane mapowanie dna morskiego. Wtedy do akcji przystąpił E/V Nutilus, którego załoga, za pomocą zdalnie sterowanego pojazdu podwodnego, potwierdziła, że mamy do czynienia z wrakiem i go zidentyfikowała.
Zwodowany w drugiej połowie 1942 roku Teruzuki – Japończycy nazywali niszczyciele od zjawisk pogodowych lub przyrodniczych – pływał zaledwie kilka miesięcy. Był drugim nowoczesnym niszczycielem klasy Akizuki. W sumie na potrzeby Cesarskiej Marynarki Wojennej Wielkiej Japonii zwodowano 13 okrętów tej klasy. Były do duże niszczyciele, których głównym zadaniem była ochrona przeciwlotnicza grup lotniskowców. Były jednostkami uniwersalnymi, zdolnymi również do zwalczania okrętów podwodnych. To jedne z najlepszych niszczycieli II wojny światowej.
Teruzuki wziął udział w słynnej bitwie morskiej u wybrzeży Guadalcanal, uszkadzając i biorąc udział w zatopieniu kilku amerykańskich jednostek. Wkrótce po bitwie został okrętem flagowym 10. Eskadry Niszczycieli. Brał udział w eskortowaniu okrętów zaopatrzeniowych podczas legendarnych zmagań o Guadalcanal. Dnia 12 grudnia 1942 roku niszczyciel został zaatakowany przez amerykańskie kutry torpedowe PT. W pobliżu Cape Esperance został trafiony dwiema torpedami, które uszkodziły ster i doprowadziły do pożaru. Nie udało się go opanować. Większość załogi zdążyła się ewakuować, zanim doszło do wybuchu amunicji i zatonięcia niszczyciela.
Odnalezienie okrętu flagowego admirała Tanaki to dzieło wielonarodowego zespołu, który wspólnie udokumentował wrak, stwierdził archeolog morski Phil Hatmeyer z NOAA. To właśnie obecne badania archeologiczne pokazały prawdziwe losy Teruzuki. Okazało się, że to nie eksplozja amunicji przypieczętowała jego los. Okręt skazany był na zagładę już wcześniej. Torpedy, które weń trafiły oderwały 19-metrowy fragment rufy, który leży 200 metrów od wraku.
Japońska jednostka została odkryta w ramach międzynarodowej misji badawczej, która dotychczas odnalazła w regionie 12 miejsc spoczynku wraków z czasów II wojny światowej. Kampania na Wyspach Salomona rozpoczęła się w sierpniu 1942 roku od lądowania Amerykanów na Guadalcanal. Ciężkie walki o wyspę trwały przez pół roku. Amerykańska piechota morska broniła się wokół lotniska polowego, a Japończycy atakowali z głębi wyspy. W tym czasie w pobliżu toczyły się liczne bitwy morskie. Na niewielkim fragmencie oceanu pomiędzy wyspami Savo, Florida i Guadalcanal spoczęło kilkadziesiąt okrętów. Z tego też powodu obszar ten nazywa się obecnie Iron Bottom Sound, czyli Cieśniną Żelaznego Dna.
Na witrynie NautilusLive można m.in. oglądać całodobową relację na żywo z Nautilusa.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wielkie tsunami niszczą wybrzeża i transportują olbrzymie ilości szczątków roślinnych i innych na dużej odległości. Jednak z powodu erozji wybrzeży i słabego zachowywania się materiału roślinnego, trudno jest rozpoznać depozyty złożone przez tsunami w starszym zapisie geologicznym. Grupa japońskich naukowców zidentyfikowała wyjątkowo bogate nagromadzenie bursztynu w osadach morskich na dużej głębokości. Uczeni uważają, że bursztyn znalazł się tam w wyniku jednego lub więcej tsunami, które uderzyło w wybrzeże Wysp Japońskich pomiędzy 116 a 114 milionów lat temu.
Uczeni analizowali bogate w bursztyn pokłady krzemionki znajdujące się w kamieniołomie Shimonakagawa. Złoża te powstały około 115 milionów lat temu, gdy region ten stanowił dno głębokiego morza. Naukowcy zauważyli, że złoża bursztynu są zdeformowane w sposób przypominający struktury płomieniowe w deformacjach sedymentacyjnych. Struktury takie tworzą się w miękkich osadach. Jako że żywica wystawiona na działanie powietrza twardnieje w ciągu tygodni, struktury płomieniowe sugerują, że żywica z której powstał bursztyn, nie była przez dłuższy czas wystawiona na kontakt z powietrzem. Szybko trafiła na dno.
Zdaniem autorów badań, jedynym scenariuszem, który wyjaśnia tak szybkie przedostanie się dużej ilości żywicy na dno jest przyniesienie jej tam przez tsunami. Żywica została następnie przykryta warstwą mułu i zachowana do naszych czasów.
Ze szczegółami badań można zapoznać się na łamach Scientific Reports.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 3000-tonowego Kamiokande, który działał w latach 1983–1995.
Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować.
Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K.
Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA.
Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie.
Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021.
Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki.
Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu.
Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa.
Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1.
W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Podczas wykopalisk na Molkenmarkt, najstarszym placu Berlina, archeolodzy dokonali niespodziewanego odkrycia. W piwnicy domu zniszczonego w czasie II wojny światowej znaleziono broń białą. Początkowo odkrywcy przypuszczali, że mają do czynienia z szablą paradną. Jednak podczas prac konserwatorskich okazało się, że to japoński krótki miecz wakizashi z XVII wieku. A być może nawet starszy.
Po zniszczeniach II wojny światowej, w latach 60. XX wieku dzielnica Mitte w Berlinie została znacznie przebudowana, dostosowano ją do większego ruchu samochodowego. Pracujący tam archeolodzy wiedzieli, że pod poziomem obecnych ulic znajdą piwnice starszych budynków. W jednej z takich piwnic, wśród gruzu, którymi wypełniono ją pod koniec II wojny, znajdują części rzędu końskiego z jednostki artyleryjskiej. Wśród nich jest broń biała, którą biorą za szablę paradną.
Wszystkie znaleziska archeologiczne z terenu Berlina trafiają do konserwacji w Muzeum Prehistorii i Wczesnej Historii. Tam dokonano sensacyjnego odkrycia. Okazuje się, że to japoński wakizashi. Jedna strona rękojeści jest poważnie uszkodzona przez ogień. Jednak zachowała się druga strona, zarówno sama drewniana rękojeść (tsuka), skóra płaszczki jak i tekstylna taśma oplatająca rękojeść. Pierścień (fuchi) znajdujący się pomiędzy rękojeścią a jelcem (tsuba), ozdobiony został wizerunkiem Daikoku, jednego z siedmioro bogów szczęścia, którego można poznać po młotku i worku z ryżem. Sama tsuba jest ozdobiona motywem chryzantemy i wody. Na podstawie zdobień i stylu miecz można datować na okres Edo (XVII-XIX wiek).
Jednak badania za pomocą promieniowania rentgenowskiego przyniosły kolejne niespodzianki. Okazało się, że ostrze było oryginalnie dłuższe, ale zostało skrócone. Na jego części służącej za rękojeść (nakago) widoczne są dwa otwory do mocowania, ale wykorzystano tylko jeden. Oczywistym stało się, że drewniana rękojeść została dodana później, po skróceniu ostrza. Takie skrócenie dłuższego miecza, by zrobić z niego wakizashi oznacza, że oryginał powstał wcześniej. Zabytek może pochodzić nawet z XVI wieku. Skracanie mieczy było popularne w okresie Edo, gdy władze nakazały samurajom noszenie dwóch mieczy – katany oraz krótszego. Z krótszych zwykle wybierano właśnie wakizashi.
Jak symbol statusu samuraja mógł trafić do berlińskiej piwnicy? Być może miecz został przywieziony przez japońską misję dyplomatyczną Takenouchi z 1862 roku lub misję Iwakura z 1873 roku. Misje te to podróże japońskich ambasadorów, którzy odwiedzali Europę i nawiązywali kontakty dyplomatyczne. Przypuszczenie o pochodzeniu miecza z którejś z tych misji jest tym bardziej uzasadnione, że na Molkenmarkt znajdowały się arystokratyczne pałace wybudowane w pobliżu zamku w Berlinie.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.