Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Enterowirusy z jelita mogą się przyczyniać do rozwoju cukrzycy typu 1.

Rekomendowane odpowiedzi

Amerykańsko-australijski zespół znalazł nowe dowody na potwierdzenie związku między podwyższonym poziomem enterowirusów w przewodzie pokarmowym dzieci a autoimmunizacją wysp trzustkowych, która poprzedza cukrzycę typu 1.

Naukowcy badali krew i kał 93 dzieci (uczestników Australian Viruses In the Genetically at Risk study, VIGR, u których co najmniej jeden z krewnych pierwszego stopnia cierpi na cukrzycę typu 1.). Posłużono się narzędziem do sekwencjonowania VirCapSeq-VERT (od ang. Virome-Capture-Sequencing for Vertebrate-infecting viruses), które pozwala scharakteryzować wszystkie wirusy z próbki.

Badania kału wskazały 129 wirusów, które występują bardziej licznie w przewodzie pokarmowym dzieci z autoimmunizacją wysp trzustkowych; w grupie tej znalazło się 5 enterowirusów A. Autorzy publikacji z pisma Scientific Reports podkreślają, że potrzeba dalszych badań, by ustalić, jaki konkretnie wirus bądź wirusy mogą prowadzić do autoimmunizacji wysp trzustkowych i cukrzycy typu 1.

W przypadku próbek krwi nie stwierdzono takiej korelacji. Naukowcy tłumaczą, że nie powinno to dziwić, zważywszy że organizm szybciej usuwa wirusy z krwi niż z jelita.

Wyniki uprawomocniają teorię, że enetrowirusy mogą się rozprzestrzeniać z jelita do trzustki dziecka i wyzwalać proces autoimmunizacji komórek β - podsumowuje prof. Thomas Briese, epidemiolog z Center for Infection and Immunity (CII) Uniwersytetu Columbia.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Na Uniwersytecie w Edynburgu powstała innowacyjna technologia tworzenia ultracienkich warstw ludzkich komórek w kształcie rurek. Może się ona przyczynić do stworzenia w laboratoriach struktur bardzo podobnych do naczyń krwionośnych czy jelit. Technika nazwana przez jej twórców RIFLE (rotational internal flow layer engineeering) pozwala na tworzenie oddzielnych warstw o grubości 1 komórki każda. To kluczowy element w kierunku rozwoju dokładnych modeli tkanek o kształcie rurek. Posłużą one w badaniach laboratoryjnych i będą mogły stanowić alternatywę dla badań na zwierzętach.
      W całym organizmie mamy wiele tkanek w kształcie rurek, a obecne metody ich uzyskiwania mogą niedokładnie odzwierciedlać ich budowę. Możliwość precyzyjnego odtwarzania tego typu tkanek w warunkach laboratoryjnych pozwoli na prowadzenie eksperymentów w warunkach bardziej zbliżonych do rzeczywistych.
      Technika RIFLE polega na wstrzykiwaniu niewielkich ilości płynu zawierającego komórki do rurki obracającej się z prędkością do 9000 rpm. Dzięki tak dużej prędkości komórki równomiernie rozkładają się na wewnętrznych ściankach rurki. Im większa prędkość, tym cieńsza ich warstwa. Dzięki wielokrotnemu powtarzaniu tego procesu można uzyskać wielowarstwową strukturę w kształcie rurki.
      Nie można wykluczyć, że w ten sposób uda się też pozyskiwać tkanki do przeszczepów, jednak to będzie wymagało wielu lat badań laboratoryjnych i testów klinicznych.
      Ze szczegółami można zapoznać się w piśmie Biofabrication.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pewne grzyby przenoszą się z jelita do trzustki, zwiększają swoją populację ponad 1000-krotnie i sprzyjają wzrostowi komórek nowotworowych. Opublikowane w Nature badania jako pierwsze zapewniają silne dowody, że mykobiom (społeczność grzybów z trzustki) może wyzwalać zmiany, które przekształcają normalne komórki w przewodowego gruczolakoraka trzustki (ang. pancreatic ductal adenocarcinoma, PDA).
      Badania przeprowadzone na myszach i pacjentach z rakiem trzustki pokazały, że grzyby przemieszczają się do trzustki przez przewód trzustkowy, który odprowadza z trzustki sok trzustkowy.
      Zespół z Uniwersytetu Nowojorskiego (NYU) zauważył także, że podawanie myszom silnego leku przeciwgrzybicznego zmniejszało w ciągu 30 tygodni wagę guza (PDA) o 20-40%.
      O ile wcześniejsze badania naszego zespołu pokazały, że bakterie przemieszczają się z jelita do trzustki, o tyle najnowsze studium po raz pierwszy potwierdza, że grzyby także odbywają takie wyprawy. Ponadto [wykazaliśmy, że] związane z tym zmiany populacji grzybów sprzyjają zapoczątkowaniu i wzrostowi guza - podkreśla dr George Miller.
      Zespół z NYU dodaje, że choć Amerykańskie Towarzystwo Onkologiczne uznaje za przyczyny raka trzustki wirusy, bakterie i pasożyty, żadne z wcześniejszych badań nie połączyło z tą chorobą grzybów.
      By ustalić, czy mykobiom jest reprogramowany, gdy prawidłowe komórki zmieniają się w nowotworowe (gdy zachodzi nowotworzenie), przez 30 tyg. badano próbki kału myszy zdrowych i z rakiem trzustki. By zidentyfikować i zliczyć obecne gatunki grzybów, naukowcy przeprowadzili analizy genomiczne i statystyczne. Żeby prześledzić migracje przez jelito i trzustkę, grzyby znakowano fluorescencyjnymi białkami.
      Naukowcy zaobserwowali znaczące różnice w wielkości i składzie populacji grzybów zdrowej i zmienionej chorobowo trzustki. Największy wzrost populacji (zarówno u myszy, jak i w ludzkich tkankach) stwierdzono w przypadku rodzaju Malassezia. Nieprawidłowo podwyższona liczebność występowała również w przypadku rodzajów Parastagonospora, Saccharomyces i Septoriella.
      Od dawna wiadomo, że grzyby z rodzaju Malassezia, które generalnie występują na skórze, w tym na skórze głowy, są odpowiedzialne za łupież i niektóre postaci egzemy. Ostatnie badania powiązały je jednak dodatkowo z nowotworami skóry i jelita grubego. Nasze nowe ustalenia dostarczają dowody, że dużo grzybów Malassezia występuje również w guzach trzustki - opowiada prof. Deepak Saxena.
      By przetestować wpływ zmieniających się grzybowych populacji na nowotwór, akademicy przeleczyli myszy amfoterycyną B (antybiotykiem przeciwgrzybicznym o szerokim spektrum działania). Okazało się, że masa guza spadła, o 20-30% zmniejszyła się też częstość występowania dysplazji.
      Wyeliminowanie grzybów o 15-25% wzmocniło także antynowotworowy wpływ standardowej chemioterapii gemcytabiną - dodaje dr Berk Aykut.
      Gdy trzustki myszy zostały w większości oczyszczone z grzybów przez leczenie, zespół badał, co się stanie z guzem, jeśli na zasiedlenie narządu pozwoli się tylko pewnym gatunkom grzybów. Okazało się, że guz rósł 20% szybciej w trzustkach ponownie zasiedlonych Malassezia (nie działo się tak jednak w obecności innych często występujących grzybów).
      Amerykanie tłumaczą, że grzyby zwiększają ryzyko raka, aktywując układ dopełniacza; wcześniejsze badania wykazały bowiem, że w obecności pewnych nieprawidłowości genetycznych dopełniacz sprzyja agresywnemu wzrostowi tkanki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zaburzenie genów zegarowych pewnej grupy komórek z jelita - naturalnych komórek limfoidalnych typu 3. (ang. Type 3 Innate Lymphoid Cells, ILC3s) - prowadzi do spadku ich liczebności, ciężkiego stanu zapalnego, problemów z barierą jelitową i nasilonej akumulacji tłuszczu. Wg autorów badania, to po części wyjaśnia, czemu u osób, które pracują nocą czy zmieniają strefy czasowe, często występują otyłość lub nieswoiste zapalenia jelit (IBD).
      Brak snu lub zmienione nawyki związane ze snem mogą mieć dramatyczne konsekwencje zdrowotne, skutkując różnymi chorobami, które często mają komponent immunologiczny, np. IBD - podkreśla Henrique Veiga-Fernandes z Fundacji Champalimaudów. By zrozumieć, co się dzieje, naukowcy zaczęli sobie zadawać pytania odnośnie do komórek odpornościowych z jelita i zegara biologicznego.
      Jak wyjaśniają Portugalczycy, niemal wszystkie komórki w organizmie mają maszynerię genetyczną, która podąża za rytmem okołodobowym za pośrednictwem ekspresji tzw. genów zegarowych. Geny zegarowe działają jak miniaturowe zegarki, które informują komórki o porze dnia i w ten sposób pomagają tworzonym przez nie narządom i układom przewidzieć, co się będzie działo, np. czy jest pora jedzenia, czy spania.
      Naukowcy dodają, że choć zegarki komórkowe są autonomiczne, nadal muszą być synchronizowane, by upewnić się, że wszyscy znajdują się na tej samej stronie [instrukcji].
      Komórki wewnątrz organizmu nie mają bezpośredniej informacji o zewnętrznym świetle, co oznacza, że zegarki poszczególnych komórek mogą dawać niewłaściwe wskazania. Zadaniem zegara mózgowego [jąder nadskrzyżowaniowych], który otrzymuje bezpośrednie dane nt. światła, jest [więc] synchronizacja tych zegarków w ciele, tak by wszystkie układy działały jak dobra orkiestra. To absolutnie konieczne dla dobrostanu.
      Autorzy artykułu z pisma Nature odkryli, że spośród różnych komórek odpornościowych z jelita ILC3s są szczególnie podatne na zaburzenia genów zegarowych. Komórki te spełniają w jelicie ważne funkcje: zwalczają infekcje, kontrolują integralność nabłonka jelit oraz regulują wchłanianie tłuszczów. Gdy zaburzyliśmy ich zegary, odkryliśmy, że liczba ILC3s w jelicie była znacząco obniżona. To zaś skutkowało ciężkim stanem zapalnym, załamaniem bariery jelitowej i nasiloną akumulacją tłuszczu.
      W dalszej kolejności ekipa postanowiła sprawdzić, czemu mózgowy zegar ma tak silny wpływ na liczebność ILC3s.
      Gdy akademicy analizowali, jak zaburzenie mózgowego zegara wpływa na ekspresję różnych genów w ILC3s, okazało się, że problemem jest brak molekularnego "kodu pocztowego". Jak wyjaśniają Portugalczycy, by dało się zlokalizować jelito, w błonie ILC3s musi zachodzić ekspresja pewnego białka, które działa jak kod pocztowy. Ten znacznik instruuje ILC3s, czasowych rezydentów jelita, gdzie migrować. Pod nieobecność mózgowych wskazówek okołodobowych w ILC3s nie zachodzi ekspresja znacznika, przez co nie mogą one trafić do celu.
      Veiga-Fernandes uważa, że udało się ustalić coś bardzo ważnego, gdyż wyjaśnia się, czemu u osób prowadzących nocny tryb życia pojawiają się problemy z jelitem. To doskonały przykład adaptacji ewolucyjnej. Podczas aktywnego okresu dnia, kiedy jemy, mózgowy zegar obniża aktywność ILC3s, by sprzyjać zdrowemu metabolizmowi tłuszczów. [...] Po zakończeniu okresu jedzenia zegar instruuje z kolei ILC3s, by wróciły do jelita, gdzie są potrzebne, by walczyć z najeźdźcami i sprzyjać regeneracji nabłonka.
      "Nie jest zaskakujące, że osoby pracujące na nocne zmiany mogą cierpieć na choroby zapalne jelit. Wiąże się to z faktem, że opisana oś neuroimmunologiczna jest tak dobrze wyregulowana przez mózgowy zegar, że jakakolwiek zmiana zwyczajów może mieć bezpośredni wpływ na ILC3s".

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy stwierdzili, że w jelitach płodów występują społeczności grzybów. Autorzy artykułu, który ukazał się właśnie w The FASEB Journal, badali smółkę dzieci urodzonych w terminie i przed czasem.
      By wykryć i sklasyfikować grzybowe i bakteryjne DNA, zespół poddał smółkę sekwencjonowaniu MiSeq. Oprócz tego odtwarzano strukturę społeczności organizmów należących do różnych królestw i odnoszono to do wieku ciążowego w momencie narodzin. Specjaliści poszukiwali też żywych bakterii i grzybów; w tym celu uciekali się do hodowli.
      Badanie ujawniło, że ludzki płód jest wystawiony na oddziaływanie grzybowego DNA w ramach naturalnego, stopniowego procesu. Choć nie wiadomo, w jaki sposób drobnoustrojowe DNA akumuluje się w jelicie płodu, składniki te wydają się obecne od wczesnych etapów ciąży i najprawdopodobniej odgrywają ważną rolę w ludzkim rozwoju i zdrowiu.
      Zrozumienie, jak zachodzi naturalna początkowa kolonizacja grzybami, pozwoli nam zacząć badania zaburzeń tego procesu. [To bardzo istotne, gdyż] nieprawidłową grzybową kolonizację jelita powiązano z całym szeregiem chorób, m.in. z nieswoistymi zapaleniami jelit czy astmą - podsumowuje prof. Kent Willis z Wydziału Neonatologii Centrum Nauk o Zdrowiu Uniwersytetu Tennessee.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W wyściółce jelit uisiti białouchych z chorobą zapalną przewodu pokarmowego zachodzą zmiany, które przywodzą na myśl agregaty nieprawidłowych białek w mózgach pacjentów z chorobą Parkinsona (ChP). Wg naukowców, stanowi to poparcie dla idei, że stan zapalny odgrywa kluczową rolę w rozwoju ChP.
      Naukowcy z Uniwersytetu Wisconsin-Madison odkryli zmodyfikowaną wersję alfa-synukleiny w próbkach tkanki przechowywanych w banku Wisconsin National Primate Research Center.
      Wiele chorób zapalnych wydaje się mieć związek z agregacją pewnych białek. Kiedy cierpi się parkinsona, alfa-synukleina zmienia swój "kształt" i akumuluje się z innymi białkami, tworząc ciała Lewy'ego - wyjaśnia prof. Marina Emborg.
      Alfa-synukleina (ASN) to białko, które występuje w dużych ilościach w ośrodkowym układzie nerwowym, a zwłaszcza w części presynaptycznej zakończeń nerwowych. W postaci rozpuszczalnej reguluje m.in. funkcje układu dopaminergicznego. W przebiegu choroby Parkinsona dochodzi do agregacji ASN - powstają ciała Lewy'ego. W cytozolu nadmiernie wzrasta poziom dopaminy, powstają wolne rodniki, które uszkadzając DNA, białka i lipidy, prowadzą do degeneracji neuronów.
      Pacjenci z ChP mają często również problemy żołądkowo-jelitowe. Ponadto u osób z nieswoistym zapaleniem jelit (ang. inflammatory bowel disease, IBD) częściej diagnozuje się parkinsona. To jedna ze wskazówek, że stan zapalny i stres oksydacyjny mają jakiś związek z ChP. Wcześniej pojawiały się np. sugestie, że stan zapalny uruchamia zmianę prawidłowej alfa-synukleiny w fosforylowaną alfa-synukleinę.
      Emborg wyjaśnia, że istnieje coś takiego, jak wewnętrzny/enteryczny układ nerwowy (ang. enteric nervous system, ENS). Bywa on nazywany "mózgiem jelitowym" i uczestniczy m.in. w regulacji aktywności przewodu pokarmowego. Podobnie jak inne neurony, te związane z unerwieniem jelitowym także zawierają alfa-synukleinę.
      Gdy zespół Emborg dowiedział się od patologów z centrum prymatologicznego, że uisiti miewają zapalenia jelita grubego, postanowił przebadać tkanki małp pod kątem zmian dotyczących alfa-synukleiny. Okazało się, że uisiti z historią chorób zapalnych miały więcej fosforylowanej alfa-synukleiny.
      Opisane zjawisko wskazuje na związek między stanem zapalnym a parkinsonowską patologią alfa-synukleiny. To nie oznacza, że jeśli masz IBD, zachorujesz na parkinsona. Rozwój chorób neurodegeneracyjnych zależy [bowiem] od wielu czynników. Może to jednak być czynnik sprzyjający.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...