Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Dotąd wiadomo było, jak wygląda ciąg reakcji uruchamianych przez nikotynę do momentu jej związania z receptorami nikotynowymi na powierzchni neuronów. Słabiej poznano za to proces zachodzący po dostaniu się alkaloidu do komórki. Najnowsze eksperymenty ze specjalnym bioczujnikiem uchyliły jednak rąbka tajemnicy. Naukowcy mają nadzieję, że dzięki temu uda się lepiej zrozumieć naturę uzależnienia od nikotyny.

Zespół prof. Henry'ego Lestera z Caltechu wyjaśnia, że siateczka śródplazmatyczna (ER) pełni funkcję fabryki i magazynu. To tu powstają różne białka, które są następnie pakowane do pęcherzyków transportowych. Należą do nich m.in. acetylocholinergiczne receptory nikotynowe (NACh-R), które ostatecznie trafiają na powierzchnię komórki.

Gdy nikotyna dostanie się do organizmu, za pośrednictwem krwiobiegu dociera do mózgu i neuronów z NACh-R. Związanie z receptorami powoduje uwalnianie dopaminy (wzrost stężenia dopaminy w układzie mezolimbicznym jest odpowiedzialny za uczucie szczęścia).

O wiele mniej wiadomo o tym, co dzieje się po dostaniu nikotyny do komórek. Na razie Lester ustalił, że niektóre receptory NACh-R zostają w siateczce śródplazmatycznej i także mogą się wiązać z nikotyną.

By dokładnie zbadać oddziaływania alkaloidu w komórce, Amerykanie stworzyli bioczujnik iNicSnFRs, złożony ze specjalnego białka, które może się otwierać i zamykać jak pułapka muchołówki oraz inaktywowanego fluorescencyjnego białka.

Sensor ma się "zamykać" na nikotynie. Proces ten aktywuje fluorescencyjne białko, które zaczyna świecić. Na tej podstawie wiadomo, gdzie cząsteczki nikotyny występują i ile ich jest.

Naukowcy mogą umieszczać bioczujniki w konkretnych miejscach. Tym razem zlokalizowali je w siateczce śródplazmatycznej i na powierzchni komórek.

Zespół z Caltechu nagrywał filmy z komórkami z bioczujnikami. Autorzy artykułu z Journal of General Physiology prowadzili eksperymenty na 4 liniach komórkowych (HeLa, SH-SY5Y, N2a i HEK293), a także na mysich neuronach hipokampa i ludzkich neuronach dopaminergicznych uzyskanych z komórek macierzystych. Okazało się, że w przypadku wszystkich nikotyna docierała do retikulum endoplazmatycznego w ciągu 10 sekund od pojawienia się na zewnątrz komórki. Poziom nikotyny w ER to ok. 2-krotność stężenia zewnątrzkomórkowego.

Stwierdzono także, że nikotyna odgrywa rolę stabilizującego farmakologicznego szaperonu dla niektórych podtypów NACh-R, co oznacza, że ułatwia ich właściwe fałdowanie. Dzieje się tak nawet przy stężeniach ~10 nM, a u typowego palacza takie wartości mogą się utrzymywać w ciągu dnia przez 12 godzin. Zwiększa się aktywacja szlaku prowadzącego na zewnątrz, co z kolei sprawia, że neurony stają się wrażliwsze na nikotynę. Można więc powiedzieć, że im więcej ktoś pali, tym szybciej i łatwiej nikotyna na niego zadziała (wzrasta nagradzająca wartość palenia).

Na razie badania prowadzono w laboratorium na izolowanych komórkach, ale naukowcy już myślą o sprawdzeniu, czy wewnątrzkomórkowe poczynania nikotyny są takie same w neuronach żywych myszy.

Co ważne, rozpoczęły się już prace nad biosensorami innych substancji psychoaktywnych, w tym opiodów i antydepresantów.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych.
      Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer.
      Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem.
      Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań.
      Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy.
      Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku.
      Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu.
      Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego.
      Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowa grupa naukowa, na której czele stali uczeni z Uniwersytetu Kalifornijskiego w Berkeley oraz US Institute for Molecular Manufacturing, twierdzi, że jeszcze w bieżącym wieku powstanie interfejs łączący ludzki mózg z chmurą komputerową.
      Ma się to stać możliwe dzięki szybkim postępom w nanotechnologii, nanomedycynie, sztucznej inteligencji i na polu obliczeniowym. Interfejs taki dawałby człowiekowi natychmiastowy dostęp zarówno do danych jak i zasobów obliczeniowych chmury. Artykuł opisujący taki interfejs opublikowano na łamach Frontiers in Neuroscience.
      Koncepcja interfejsu B/CI (Human Brain/Cloud Interface) została zaproponowana przez futurystę i wynalazcę Raya Kurzweila. Zasugerował on, że neuronowe nanoroboty mogą zostać wykorzystane do połączenia kory nowej mózgu człowieka z „syntetyczną korą nową” chmury obliczeniowej. To właśnie pomysły Kurzweila położyły podwaliny pod najnowszą pracę grupy naukowej, której głównym badaczem był Robert Freitas.
      Zaproponowane przez grupę nanoroboty zapewniałyby dostęp w czasie rzeczywistym, monitorowanie połączenia i kontrolę sygnałów przesyłanych pomiędzy chmurą a ludzkim mózgiem. Te urządzenia będą przemieszczały się w naczyniach krwionośnych, przekraczały barierę krew-mózg i precyzyjnie pozycjonowały się wśród, a nawet wewnątrz, komórek ludzkiego mózgu. Będą następnie bezprzewodowo przesyłały zakodowane informacje do superkomputerów w chmurze, wyjaśnia Freitas. Wedle jego koncepcji mielibyśmy do czynienia ze swoistym internetem myśli.
      Interfejs B/CI sterowany za pomocą neuronowych nanorobotów dałby człowiekowi natychmiastowy dostęp do całej ludzkiej wiedzy przechowywanej w chmurze, jednocześnie zwiększałoby możliwości uczenia się i inteligencję człowieka, mówi jeden z główny autorów, doktor Nunu Martins. B/CI pozwoliłby też na stworzenie w przyszłości jednego wielkiego „globalnego supermózgu” składającego się z mózgów wszystkich ludzi oraz sztucznej inteligencji.
      Eksperymentalny system BrainNet, chociaż nie jest jakość szczególnie skomplikowany, już został przetestowany pozwalając wymianę myśli za pomocą chmury. Wykorzystano w tym celu przezczaszkową rejestrację sygnałów elektrycznych nadawcy i przezczaszkową stymulację magnetyczną odbiorcy, co pozwoliło obu osobom na wspólną pracę, mówi Martins. Uważamy, że postęp neuronowej nanorobotyki pozwoli na stworzenie w przyszłości supermózgów, które będą mogły w czasie rzeczywistym korzystać z myśli i mocy obliczeniowej innych mózgów oraz maszyn. Taka wspólna świadomość może zrewolucjonizować demokrację, zwiększyć poziom empatii i połączyć różne pod względem kulturowym grupy w jedno prawdziwie globalne społeczeństwo, dodaje.
      Zdaniem naukowców, najpoważniejszym ograniczeniem rozwoju B/CI będzie zapewnienie odpowiednio szybkiego transferu danych do i z chmury obliczeniowej. To wyzwanie oznacza nie tylko konieczność znalezienia pasma dla globalnej transmisji, ale również rozwiązania problemu wymiany danych pomiędzy chmurą a neuronami za pomocą niewielkich urządzeń znajdujących się głęboko w mózgu, stwierdza Martins.
      Jednym z proponowanych rozwiązań jest zastosowanie nanocząstek magnetoelektrycznych. Te nanocząstki były już używane w organizmie myszy do połączenia zewnętrznego pola magnetycznego z polem elektrycznym neuronów, czyli do wykrywania i lokalnego wzmacniania sygnałów magnetycznych, co z kolei pozwoliło na zmianę aktywności elektrycznej neuronów. Mogą działać też odwrotnie, czyli wzmacniać sygnały elektryczne wytwarzane przez neurony i nanoroboty, co pozwoli na ich wykrycie poza czaszką.
      Największym wyzwaniem nowej technologii będzie bezpieczne umieszczenie w mózgu działających neutralnych dla organizmu nanocząstek i nanorobotów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ramach pionierskich badań prześledzono aktywność pojedynczych neuronów znajdujących się głęboko w mózgu, a dokonane odkrycia mogą wyjaśnić, skąd się bierze ludzka inteligencja i dlaczego jesteśmy podatni na choroby psychiczne.
      Autorami wyjątkowych badań są Rony Paz z izraelskiego Instytutu Weizmanna, który specjalizuje się w badaniu dynamiki neuronów zaangażowanych w procesy uczenia się u makaków oraz neurochirurg Itzhak Fried z Uniwersytetu Kalifornijskiego w Los Angeles.
      Dzięki badaniom pojedynczych neuronów naukowcy byli w stanie, po raz pierwszy w historii, odkryć różnice pomiędzy „oprogramowaniem” ludzkiego i małpiego mózgu. Okazało się, że ludzki mózg potrafi wykorzystać stabilność sygnałów, czyli poziom im synchronizacji pomiędzy neuronami, do bardziej efektywnego przetwarzania informacji. Na łamach Cell odkrywcy sugerują, że to właśnie ta umiejętność przyczynia się zarówno do ludzkiej inteligencji, jak i do powstawania chorób psychicznych.
      Badacze wykorzystali dane na temat aktywności pojedynczych neuronów, które zbierali od ludzi z epilepsją w czasie, gdy ci przechodzili zabiegi neurochirurgiczne. Przeprowadzenie takich badań jest tak trudne, że jedynie kilka klinik na świecie mogło wziąć w nich udział. Dla porównania zebrano podobne, istniejące już wcześniej dane od trzech małp oraz pozyskane je od dwóch kolejnych.
      Przez ostatnich kilka dziesięcioleci naukowcy odnotowali wiele mniejszych i większych różnic w budowie mózgu człowieka i naczelnych. Teraz przeprowadzono pierwsze badania pokazujące różnice w sygnałach przebiegających w mózgu.
      Istnieje wyraźna różnica w zachowaniu i psychologii pomiędzy ludźmi a innymi naczelnymi. Teraz zaobserwowaliśmy te różnice w biologii mózgu i są to niezwykle ważne badania, mówi Mark Harnett z MIT, który specjalizuje się w badaniu, w jaki sposób biofizyka neuronów wpływa na ich zdolności obliczeniowe.
      Rony Paz w swoich badaniach skupia się na ciele migdałowatym, przetwarzającym podstawowe sygnały potrzebne do przetrwania, jak konieczność ucieczki przed drapieżnikiem, oraz zakręcie obręczy, który jest zaangażowany w bardziej złożone zadania, jak uczenie się.
      Izraelski uczony chciał wiedzieć, czy neurony z obu wymienionych obszarów różnią się u ludzi i u małp. O pomoc poprosił Frieda, który jest twórcą techniki rejestrowania aktywności pojedynczych neuronów u ludzi z epilepsją nie reagujących na leczenie. Metoda Frida polega na wszczepieniu do mózgu pacjenta wielu miniaturowych elektrod. Pacjent pozostaje w szpitalu do czasu, aż dozna ataku epilepsji. Elektrody określają miejsce, które zapoczątkowało atak. Są one następnie usuwane, a obszar odpowiedzialny za epilepsje jest niszczony. Pacjenci w czasie pobytu w szpitalu często biorą udział w eksperymentach pozwalających na pogłębienie wiedzy o mózgu.
      Paz i Fried zebrali dane o niemal 750 neuronach z ciała migdałowatego i zakrętu obręczy z mózgów pięciu małp i siedmiu ludzi. W danych poszukiwali informacji o poziomie stabilności sygnałów rozumianym jako ich synchronizacja oraz o wydajności ich przetwarzania, rozumianych jako liczba różnych wzorców aktywności.
      Okazało się, że i u ludzi i u małp sygnały w ciele migdałowatym były bardziej stabilne niż w zakręcie obręczy. Jednak te w zakręcie obręczy były bardziej efektywne. U ludzi oba regiony były mniej stabilne i bardziej efektywne niż u małp. Tak więc wydaje się, że nasze mózgi poświęcają nieco stabilności na rzecz zwiększonej efektywności.
      Jak mówi Paz, takie odkrycie ma sens. Jeśli sygnał jest bardziej stabilny, jest on bardziej jednoznaczny i mniej podatny na błędy. Gdy widzę tygrysa, chcę, by wszystkie neurony w moim ciele migdałowatym dały mi sygnał do szybkiej ucieczki, mówi Paz. Jednak u wyżej zorganizowanych zwierząt, jak np. u naczelnych, w mózgu wyewoluowały bardziej elastyczne obszary, które dają możliwość pojawienia się większej liczby rozwiązań na widok zbliżającego się niebezpieczeństwa.
      U ludzi ta elastyczność poszła dalej niż u innych naczelnych. Jesteśmy dzięki temu bardziej inteligentni, ale i bardziej podatni na błędy w sygnałach pomiędzy neuronami, co wyjaśnia podatność ludzi na zaburzenia umysłowe.
      Co interesujące, jak zauważa Robert Knight z Uniwersytetu Kalifornijskiego w Berkeley, powyższe odkrycie zgadza się z już istniejącymi teoriami psychologicznymi, które mówią, że stopień synchronizacji aktywności neuronów w mózgu może być skorelowany z występowaniem psychoz i depresji. To bardzo ważne badania, gdyż większość eksperymentów neurologicznych jest prowadzonych na zwierzętach z założeniem, że podstawowe wzorce aktywności neuronów odnoszą się też do ludzi, mówi.
      Christopher Petkov z Newcastle University zauważa jednak, że w kolejnych badaniach konieczne jest potwierdzenie spostrzeżeń Paza i Frieda. Bezpośrednie porównanie danych pozyskanych od ludzi i małp jest trudne, gdyż trudno jest stwierdzić, czy oba badane gatunki znajdowały się podczas zbierania danych w tym samym stanie umysłu. Paz przyznaje, że może być to problem, a długi, liczony w godzinach, czas rejestrowania danych oznacza, iż prawdopodobnie pojawiło się wiele różnic w stanie umysłu ludzi i małp. Uczony mówi jednak, że już planuje kolejne eksperymenty, w czasie których małpy i ludzie będą wykonywali podobne zadania wprowadzające je w konkretny stan, jak na przykład w niepokój.
      Badania takie nie będą jednak proste. Jako, że elektrody umieszczane są u epileptyków tylko w tych obszarach, gdzie prawdopodobnie pojawiają się napady, to – jak zauważa Fried – w klinikach zdolnych do przeprowadzenia badań pojawia się w ciągu roku jedynie 10–15 odpowiednich pacjentów i trzeba ich namówić, by pozostali w szpitali i wzięli udział w nudnych eksperymentach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wirus zabijający komórki nowotworowe został wyposażony w nową broń. Naukowcy uzbroili go w proteinę, dzięki której bierze on na cel i zabija również przyległe komórki, chroniące nowotwór przed atakiem ze strony układ odpornościowego.
      Po raz pierwszy udało się w ten sposób wziąć na cel fibroblasty znajdujące się w guzie. Fibroblasty te to zdrowe komórki, które zostały zaprzęgnięte przez nowotwór do jego ochrony i dostarczania mu pożywienia.
      Naukowcy z Uniwersytetu w Oksfordzie informują, że wstępne testy, przeprowadzone na hodowlach ludzkich komórek oraz na myszach wykazały, iż nowa technologia jest bezpieczna. Jeśli wyniki te się potwierdzą, to pierwsze testy na ludziach mogą rozpocząć się już w przyszłym roku.
      Obecnie używane techniki, które prowadzą do śmierci fibroblastów w guzie, zabijają też fibroblasty w innych częściach organizmu, przez są są wysoce szkodliwe.
      Autorzy najnowszych badań, których wyniki opublikowano w piśmie Cancer Research, wykorzystali wirusa o nazwie enadenotucirev, który od kilku lat jest testowany pod kątem zwalczania komórek nowotworowych. Do genomu wirusa dodali informację genetyczną, która powodowała, że zainfekowane nim komórki nowotworowe zaczęły wytwarzać podwójnie specyficzne przeciwciała monoklonalne (BiTE). Proteina ta łączy się z dwoma typami komórek. W tym przypadku jeden z jej końców łączył się z fibroblastami, a drugi z limfocytami T, powodując, że limfocyty zabijały fibroblasty.
      Przejęliśmy mechanizm wirusa, dzięki czemu BiTE były wytwarzane tylko w zainfekowanych komórkach nowotworowych i nigdzie indziej w organizmie. To tak potężne molekuły, że mogą aktywować komórki układu odpornościowego wewnątrz guza i skłonić je do ataku na fibroblasty, mówi główny autor badań doktor Joshua Freedman z Uniwersytetu w Oksfordzie.
      Nawet gdy większość komórek nowotworowych zostaje zabitych, to fibroblasty mogą ochronić te pozostałe i pomóc w nawrocie choroby. Dotychczas nie istniał żaden sposób, by zabić komórki nowotworowe i fibroblasty, a jednocześnie ochronić fibroblasty w innych częściach organizmu. Nasza nowa technika może być ważnym krokiem w kierunku zmniejszenia siły tłumienia układu odpornościowego przez nowotwór i może pomóc w ponownym uruchomieniu procesu ochrony organizmu. Wykorzystany przez nas wirus jest już testowany na ludziach, mamy więc nadzieję, że nasz zmodyfikowany wirus zostanie dopuszczony do testów klinicznych już w przyszłym roku, dodaje doktor Kerry Fisher z Wydziału Onkologii Oxford University.
      Dotychczas zmodyfikowany wirus został pomyślnie przetestowany na próbkach guzów nowotworowych oraz próbkach zdrowego szpiku kostnego. Nie zauważono żadnego toksycznego działania czy też niewłaściwej aktywacji limfocytów T.
      Wspomniany wirus infekuje raki, najbardziej rozpowszechnione typy nowotworów, które rozpoczynają się w skórze lub tkankach otaczających organy wewnętrzne, takie jak trzustka, płuca, jajniki, prostatę i inne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Składnik zielonej herbaty - flawonoid galusan epigallokatechiny (EGCG) - pomaga terapeutycznemu krótkiemu interferującemu RNA (ang. small interfering RNA, siRNA) wniknąć do komórki.
      Naukowcy wspominają o dużym potencjale terapeutycznym siRNA, który może wyciszać ekspresję genów związanych z chorobami. Problemem jest jednak, by siRNA dostał się do komórki i mógł zacząć wykonywać swoje zadanie. Ponieważ siRNA są stosunkowo duże i mają ujemny ładunek, niełatwo im pokonać błonę komórkową. Poza tym są one podatne na rozkład przez enzymy - rybonukleazy (RN-azy).
      By jakoś rozwiązać te problemy, naukowcy próbowali powlekać siRNA różnymi polimerami. Niewiele to jednak pomogło; te o niskiej masie molekularnej nie były toksyczne, ale nie potrafiły dostarczyć siRNA do cytozolu, zaś te o dużej masie dawały radę, ale były silnie cytotoksyczne.
      Zespół Yiyuna Chenga zaczął się więc zastanawiać nad wykorzystaniem EGCG, który silnie wiąże się z RNA. Gdyby jeszcze dodać polimer o niskiej masie molekularnej, można by uzyskać nanocząstki, które bezpiecznie dostarczą siRNA do komórek.
      Podczas eksperymentów EGCG i siRNA samoorganizowały się w ujemnie naładowany rdzeń, który naukowcy powlekali skorupą z polimeru o niskiej masie molekularnej.
      W hodowlach komórkowych nanocząstki skutecznie wyłączały ekspresję kilku wybranych genów, a to znaczy, że potrafiły pokonać barierę błony komórkowej. Później autorzy publikacji z pisma ACS Central Science testowali swoje nanocząstki na myszach, u których stan zapalny (uraz) jelita wywołano za pomocą soli sodowej siarczanu dekstranu (ang. dextran sodium sulfate, DSS). W tym przypadku miały one obrać na cel enzym prozapalny. Okazało się, że zastosowanie nanocząstek doprowadziło do zelżenia/wyeliminowania objawów, w tym utraty wagi czy skrócenia jelita grubego.
      Cheng i inni uważają, że zaobserwowane zjawiska to nie tylko skutek wyciszenia genów przez siRNA, ale także wynik przeciwutleniającej i przeciwzapalnej aktywności galusanu epigallokatechiny.

      « powrót do artykułu
×
×
  • Create New...