Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zaatakowali raka dzięki „inteligentnej” nanocząstce

Rekomendowane odpowiedzi

Powstrzymanie komórek nowotworowych przed zablokowaniem układu odpornościowego, za co przyznano tegoroczną Nagrodę Nobla, to tylko jedna z metod immunoterapii przeciwnowotworowej.  Naukowcy z Vanderbilt University opracowali właśnie inną metodę, która pobudza komórki układu odpornościowego do walki z nowotworem. Specjalna nanocząstka pomyślnie przeszła wstępne testy na tkance ludzkiego czerniaka.

Guzy są przebiegłe i wyewoluowały wiele różnych sposobów na uniknięcie układu odpornościowego, mówi profesor John T. Wilson. Naszym celem jest ponowne uzbrojenie układu odpornościowego w narzędzia potrzebne do zniszczenia komórek raka, dodaje.

Blokada punktów kontrolnych to wielki przełom, jednak mimo to wielu pacjentów nie reaguje na leczenie takimi metodami. Opracowaliśmy nanocząstkę, która odnajduje guza i dostarcza do niego specyficzną molekułę, która jest w sposób naturalny produkowana w organizmie do zwalczania nowotworów, stwierdza Wilson.

Molekuła ta to cGAMP (monofosforan guanozyno-adenozynowy cykliczny). Jest ona podstawowym elementem aktywującym ścieżkę sygnałową białka stymulującego geny interferonu (STING). STING jest zaś ważnym naturalnym mechanizmem obronnym przed mikroorganizmami czy komórkami nowotworowymi. Nanocząstka opracowana przez zespół Wilsona dostarcza cGAMP w taki sposób, że w guzie nowotworowym rozpoczyna się odpowiedź immunologiczna, powstają limfocyty T, które mogą zniszczyć raka od środka a jednocześnie poprawić reakcję organizmu na blokadę punktów kontrolnych.

Naukowcy z Vanderbilt skupili się na czerniaku, jednak ich praca może mieć znaczenie również dla innych nowotworów. Zdaniem Wilsona w podobny spobów można będzie zaatakować raka piersi, nerki, głowy i szyi, raka płuc, jelita grubego oraz nerwiaka zarodkowego.

Jak zdradził doktorant Daniel Shae, główny autor artykułu opublikowanego w Nature Nanotechnology, najważniejsze jest opracowanie odpowiedniej nanocząstki. Została ona zbudowana z „inteligentnych” polimerów, które reagują na zmiany kwasowości środowiska, do którego trafiły. Pierwotna nanocząstka była udoskonalana ponad 20 razy, aż w końcu naukowcom udało się opracować taką, która dostarczała cGAMP i aktywowała STING w komórkach układu odpornościowego myszy, następnie w komórkach nowotworowych u myszy i w końcu w laboratoryjnych próbkach ludzkich tkanek.

Szczegółowy opis nowej metody opublikowano w artykule Endosomolytic Polymersomes Increase the Activity of Cyclic Dinucleotide STING Agonists to Enhance Cancer Immunotherapy.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wstępne badania przeprowadzone na University of Pennsylvania wskazują, że prosty suplement diety może wspomóc terapię przeciwnowotworową CAR T. Uzyskane wyniki muszą zostać jeszcze potwierdzone w czasie badań klinicznych, jednak dane, zaprezentowane podczas 66th American Society of Hematology (ASH) Annual Meeting and Exposition wskazują, że naukowcy mogli wpaść na ślad ekonomicznej strategii wzmocnienia skutków terapii CAR T.
      CAR T (chimeric antigen receptor T-cell therapy) wykorzystuje zmodyfikowane limfocyty T, które za pomocą technik biologii molekularnej i inżynierii genetycznej przeprogramowywane są ze swojego naturalnego działania – immunologicznego – na działanie przeciwnowotworowe. Tysiące pacjentów cierpiących na nowotwory hematologiczne zostało wyleczonych dzięki CAR T. Jednak wciąż nie we wszystkich przypadkach ona działa. Postanowiliśmy udoskonalić CAR T poprzez poprawienie działania limfocytów T za pomocą diety, a nie dalszej inżynierii genetycznej, mówi współautorka badań, doktor Shan Liu.
      Naukowcy rozpoczęli od badania wpływu różnych diet, w tym diety ketogenicznej, diet o wysokiej zawartości błonnika, tłuszczu, białka, cholesterolu oraz diety kontrolnej na zdolności komórek CAR T do zwalczania nowotworu. W badaniach używali mysiego modelu chłoniaka rozlanego z dużych komórek B. Okazało się, że dieta ketogeniczna, najlepiej ze wszystkich testowanych diet, poprawiała kontrolowanie nowotworu i przeżywalność myszy. W toku dalszych badań uczeni stwierdzili, że głównym czynnikiem odpowiedzialnym za dobroczynny wpływ diety na poprawę leczenia CAR T był podwyższony poziom beta-hydroksymaślanu (BHB), metabolitu wytwarzanego przez wątrobę w reakcji na dietę ketogeniczną.
      Wysunęliśmy hipotezę, że komórki CAR T preferują BHB jako źródło energii ponad standardowe cukry występujące w organizmie. Więc zwiększenie poziomu BHB wzmacnia komórki walczące z nowotworem, stwierdza współautor badań, doktor Puneeth Guruprasad.
      Następnie zespół badawczy podawał BHB myszom z ludzkim modelem nowotworu leczonym CAR T i stwierdził, że u większości zwierząt doszło do zwalczenia guzów, a komórki CAR T były bardziej aktywne. Uczeni pobrali też krew pacjentów leczonych CAR T i zauważyli, że u tych osób, u których poziom BHB był wyższy, komórki CAR T były bardziej rozpowszechnione. Zbadano też krew zdrowych ochotników, którym wcześniej podawano suplement BHB. Badania te pokazały, że i u nich niezmodyfikowane limfocyty T pozyskiwały energię podobnie, jak limfocyty używane w CAR T.
      W teorii więc suplementacja BHB powinna wspomagać pacjentów leczonych CAR T. Hipoteza ta jest badana podczas testów klinicznych prowadzonych właśnie w Penn Medicine’s Abramson Cancer Center. Mówimy o działaniu, które jest dość tanie i mało toksyczne, cieszy się mentor autorów badań, profesor mikrobiologii Maayan Levy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wiek to jeden z najważniejszych czynników ryzyka rozwoju nowotworów. W miarę, jak stajemy się coraz starsi, w naszych organizmach akumulują się mutacje, które w końcu mogą doprowadzić do pojawienia się choroby. Naukowcy z Memorial Sloan Kettering Cancer Center i ich współpracownicy opisali mechanizm, za pomocą którego zaawansowany wiek chroni przed rozwojem nowotworu. Swoje badania prowadzili na mysim modelu raka płuc.
      Nowotwory płuc są najczęściej diagnozowane u ludzi około 70. roku życia. Jednak u osób w wieku 80–85 lat odsetek zachorowań zaczyna spadać. Nasze badania pokazują dlaczego tak się dzieje. Starzejące się komórki tracą zdolność do regeneracji i ten właśnie mechanizm zapobiega rozrostowi nowotworu, mówi jedna z autorek badań, doktor Xueqian Zhuang.
      Naukowcy badali mysi model gluczorakoraka, który odpowiada za około 7% światowych zgonów na nowotwory. Zauważyli, że im myszy stawały się starsze, ich organizmy wytwarzały więcej proteiny NUPR1, a im jej więcej tym bardziej komórki w płucach działały tak, jakby miały niedobór żelaza. W rzeczywistości w komórkach żelaza było więcej, ale z powodów, których nie do końca rozumiemy, działały jak przy jego niedoborze, mówi doktor Zhuang. A że niedobór żelaza upośledza zdolność komórek do regeneracji, obecność NUPR1 powodowała, że guzy nowotworowe nie mogły się rozrastać, więc u starszych myszy były ich mniej niż u młodszych.
      Naukowcy zauważyli też, że mogą odwrócić to zjawisko, albo podając starszym zwierzętom żelazo, albo zmniejszając ilość NPUR1 w ich komórkach. Myślimy, że odkrycie to można będzie szybko wykorzystać u ludzi. Obecnie miliony ludzi żyją z nie w pełni sprawnymi płucami, gdyż nie zregenerowały się one po infekcji COVID-19 lub nie funkcjonują prawidłowo z innego powodu. Nasze badania wykazały, że podanie żelaza pozwala na regenerację płuc, a przecież posiadamy bardzo skuteczne metody podawania leków bezpośrednio do płuc, takie jak inhalatory, dodaje główny autor badań, doktor Tuomas Tammela. To jednak może być obosieczny miecz. Zwiększając zdolność komórek płuc do regeneracji, zwiększa się też zdolność tkanek do rozwoju nowotworu. "Tego typu leczenie może być więc nieodpowiednie dla ludzi, którzy już są narażeni na wysokie ryzyko nowotworu", dodaje Tammela.
      Badania mają tez znaczenie dla terapii bazujących na ferroptozie. To opisana w 2012 roku zależny od żelaza nie-apoptyczny rodzaj śmierci komórkowej. Obecnie istnieją już leki wykorzystujące ferroptozę, a które są badane np. pod kątem zastosowania ich w terapiach przeciwnowotworowych. Obecne badania pokazują, że starsze komórki są bardziej odporne na ferroptozę niż młodsze, gdyż funkcjonują tak, jakby brakowała im żelaza. To zaś wskazuje, że leki wykorzystujące ferroptozę są mniej skuteczne u starszych ludzi.
      Podsumowując wyniki badań doktor Tammela stwierdza: uzyskane przez nas dane dotyczące zapobiegania nowotworom sugerują, że to, co robimy sobie jako młodzi ludzie, jest prawdopodobnie bardziej niebezpieczne, niż gdy robimy to w starszym wieku. Powstrzymanie młodych ludzi przed paleniem tytoniu, opalaniem się czy innymi czynnościami zwiększającymi ryzyko nowotworów, jest prawdopodobnie bardziej istotne, niż sądziliśmy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Terapia przeciwnowotworowa, która zaprzęga układ immunologiczny do walki z rakiem, może spowodować, że pacjenci są narażeni na większe ryzyko ataku serca i udaru. Autorzy nowych badań – naukowcy z NYU Langone Health i Perlmutter Cancer Center – donoszą, że prawdopodobną przyczyną występowania tego efektu ubocznego może być fakt, iż terapia zaburza działanie układu odpornościowego w największych naczyniach krwionośnych serca.
      Naukowcy skupili się na inhibitorach punktów kontrolnych układu odpornościowego. Leki te blokują punkty kontrolne – molekuły znajdujące się na powierzchni komórek – które nie dopuszczają do zbytniej aktywności układu odpornościowego, pojawienia się zbyt silnego stanu zapalnego. Niektóre nowotwory przejmują te punkty, by osłabić system obronny organizmu. Zatem blokując te punkty za pomocą leków można spowodować, że układ odpornościowy poradzi sobie z nowotworem.
      Ten rodzaj terapii może jednak prowadzić do pojawienia się silnych stanów zapalnych w różnych organach. Z wcześniejszych badań wiadomo na przykład, że około 10% pacjentów z miażdżycą, po leczeniu inhibitorami, doświadcza ataku serca lub udaru.
      Dotychczas nie znano jednak szczegółowego mechanizmu, który za tym stoi. Bo go poznać, badacze sprawdzili na poziomie komórkowym, jak inhibitory punktów kontrolnych współpracują z komórkami układu odpornościowego w płytkach krwi. Analiza genetyczna wykazała, że inhibitory i komórki odpornościowe biorą na cel dokładnie te same punkty kontrolne.
      Nasze badania dostarczają bardziej precyzyjnych informacji na temat tego, w jaki sposób lek, który bierze na cel guzy nowotworowe, prowadzi do silniejszej reakcji immunologicznej w arteriach i zwiększa ryzyko chorób serca, mówi współautorka badań, doktor Chiara Giannarelli.
      Badania wykazały też, że przyjmowanie inhibitorów punktów kontrolnych może utrudniać leczenie miażdżycy. To pokazuje, że nowotwór, cukrzyca i choroby serca nie istnieją w próżni i należy rozważyć, jak leczenie jednej choroby wpływa na inne. Teraz, gdy naukowcy lepiej rozumieją zależności pomiędzy wymienionymi chorobami, mogą rozpocząć pracę nad strategiami zmniejszenia ryzyka, cieszy się doktor Kathryn J. Moore.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Uniwersytecie Stanforda powstała rewolucyjna technika obrazowania struktur wewnątrz organizmu. Polega ona na uczynieniu skóry i innych tkanek... przezroczystymi. Można tego dokonać nakładając na skórę jeden z barwników spożywczych. Testy na zwierzętach wykazały, że proces jest odwracalny. Technika taka taka, jeśli sprawdzi się na ludziach, może mieć bardzo szerokie zastosowanie – od lokalizowania ran, poprzez monitorowanie chorób układu trawienia, po diagnostykę nowotworową.
      Technologia ta może uczynić żyły lepiej widocznymi podczas pobierania krwi, ułatwić laserowe usuwanie tatuaży i pomagać we wczesnym wykrywaniu i leczeniu nowotworów, mówi Guosong Hong. Na przykład niektóre terapie wykorzystują lasery do usuwania komórek nowotworowych i przednowotworowych, ale ich działanie ograniczone jest do obszaru znajdującego się blisko powierzchni skóry. Ta technika może poprawić penetrację światła laserowego, dodaje.
      Przyczyną, dla której nie możemy zajrzeć do wnętrza organizmu, jest rozpraszanie światła. Tłuszcze, płyny, białka, z których zbudowane są organizmy żywe, rozpraszają światło w różny sposób, powodując, że nie jest ono w stanie penetrować ich wnętrza, więc są dla nas nieprzezroczyste. Naukowcy ze Stanforda stwierdzili, że jeśli chcemy, by materiał biologiczny stał się przezroczysty, musimy spowodować, żeby wszystkie budujące go elementy rozpraszały światło w ten sam sposób. Innymi słowy, by miały taki sam współczynnik załamania. A opierając się na wiedzy z optyki stwierdzili, że barwniki najlepiej absorbują światło i mogą być najlepszym ośrodkiem, który spowoduje ujednolicenie współczynników załamania.
      Szczególną uwagę zwrócili na tartrazynę czyli żółcień spożywczą 5, oznaczoną symbolem E102. Okazało się, że mieli rację. Po rozpuszczeniu w wodzie i zaabsorbowaniu przez tkanki, tartrazyna zapobiegała rozpraszaniu światła. Najpierw barwnik przetestowano na cienkich plastrach kurzej piersi. W miarę, jak stężenie tartrazyny rosło, zwiększał się współczynnik załamania światła w płynie znajdującym się w mięśniach. W końcu zwiększył się do tego stopnia, że był taki, jak w białkach budujących mięśnie. Plaster stał się przezroczysty.
      Później zaczęto eksperymenty na myszach. Najpierw wtarli roztwór tartrazyny w skórę głowy, co pozwoliło im na obserwowanie naczyń krwionośnych. Później nałożyli go na brzuch, dzięki czemu mogli obserwować kurczenie się jelit i ruchy wywoływane oddychaniem oraz biciem serca. Technika pozwalała na obserwacje struktur wielkości mikrometrów, a nawet polepszyła obserwacje mikroskopowe. Po zmyciu tartrazyny ze skóry tkanki szybko wróciły do standardowego wyglądu. Nie zaobserwowano żadnych długoterminowych skutków nałożenia tartrazyny, a jej nadmiar został wydalony z organizmu w ciągu 48 godzin. Naukowcy podejrzewają, że wstrzyknięcie barwnika do tkanki pozwoli na obserwowanie jeszcze głębiej położonych struktur organizmu.
      Badania, w ramach których dokonano tego potencjalnie przełomowego odkrycia, rozpoczęły się jako projekt, którego celem jest sprawdzenie, jak promieniowanie mikrofalowe wpływa na tkanki. Naukowcy przeanalizowali prace z dziedziny optyki z lat 70. i 80. ubiegłego wieku i znaleźli w nich dwa podstawowe narzędzia, które uznali za przydatne w swoich badaniach: matematyczne relacje Kramersa-Kroniga oraz model Lorentza. Te matematyczne narzędzia rozwijane są od dziesięcioleci, jednak nie używano ich w medycynie w taki sposób, jak podczas opisywanych badań.
      Jeden z członków grupy badawczej zdał sobie sprawę, że te same zmiany, które czynią badane materiały przezroczystymi dla mikrofal, można zastosować dla światła widzialnego, co mogłyby być użyteczne w medycynie. Uczeni zamówili więc sięc silne barwniki i zaczęli dokładnie je analizować, szukając tego o idealnych właściwościach optycznych.
      Nowatorskie podejście do problemu pozwoliło na dokonanie potencjalnie przełomowego odkrycia. O relacjach Kramersa-Kroniga uczy się każdy student optyki, w tym przypadku naukowcy wykorzystali tę wiedzę, do zbadania, jak silne barwniki mogą uczynić skórę przezroczystą. Podążyli więc w zupełnie nowym kierunku i wykorzystali znane od dziesięcioleci podstawy do stworzenia nowatorskiej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Okresowe głodówki niosą ze sobą wiele korzyści zdrowotnych. Opóźniają wystąpienie niektórych chorób związanych z wiekiem, przedłużają życie. W grę wchodzi tutaj wiele różnych mechanizmów. Jedne z badań prowadzonych MIT wykazały, że głodówka zwiększa możliwości regeneracyjne komórek macierzystych układu pokarmowego, które dzięki temu są w stanie likwidować stany zapalne czy uszkodzenia jelit. Autorzy najnowszych badań dokładnie opisali ten mechanizm, ale odkryli też jego ciemną stronę. Jeśli w takim okresie regeneracji dojdzie do mutacji onkogennych, u badanych myszy z większym prawdopodobieństwem rozwijały się guzy.
      Większa aktywność komórek macierzystych jest korzystna z punktu widzenia powrotu do zdrowia, ale zbyt dużo dobrego może z czasem mieć niekorzystne skutki, mówi główny autor badań, profesor Omer Yilmaz ze znajdującego się na MIT Koch Institute for Integrative Cancer Research. Uczony dodaje, że potrzebne są kolejne badania, by sprawdzić, czy takie samo zjawisko występuje również u ludzi.
      Yilmaz i jego zespół od wielu lat badają wpływ głodówek i diet niskokalorycznych na zdrowie układu pokarmowego. W 2018 roku wykazali, że podczas głodówki komórki macierzyste jelit zaczynają wykorzystywać lipidy, a nie węglowodany, jako źródła energii. Dowiedli też, że głodówka prowadzi do znacznego zwiększenia zdolności regeneracyjnych komórek macierzystych. Od tamtego czasu próbowaliśmy zrozumieć mechanizm, za pomocą którego głodówka zwiększa te zdolności. Czy chodzi o samą głodówkę czy o jedzenie po zakończeniu głodówki, wyjaśnia uczony.
      Nowe badania pokazały, że w czasie głodówki zdolności regeneracyjne komórek macierzystych są ograniczone, ale gwałtownie wzrastają w okresie po zakończeniu głodówki. Uczeni prowadzili eksperymenty na trzech grupach myszy. Pierwsza z nich głodowała przez 24 godziny, druga głodowała przez 24 godziny, a następnie mogła jeść kiedy chce, oraz trzecia, która mogła jeść kiedy chce. W czasie trwania eksperymentu prowadzono analizę zdolności do namnażania się komórek macierzystych jelit. Okazało się, że taki proces zachodził najbardziej intensywnie po zakończeniu głodówki.
      Głodówka i ponowne spożywanie pokarmów to dwa różne stany. Podczas głodówki komórki mogą przetrwać dzięki wykorzystywaniu lipidów. A regenerację napędza okres ponownego przyjmowania pokarmów po głodówce. Wówczas komórki macierzyste i komórki prekursorowe uruchamiają programy, które pozwalają im namnażanie się i ponowne zasiedlanie wyściółki jelit, wyjaśnia doktor Shinya Imada. Badacze dowiedzieli się, że komórki aktywują wówczas szlak sygnałowy mTOR, który zaangażowany jest w procesy wzrostu i metabolizmu komórek. Jedną z ról mTOR jest translacja mRNA w białka, więc po aktywacji, komórka produkuje więcej białka, a jego synteza jest niezbędna do rozprzestrzeniania się. Uczeni wykazali też, że aktywacja mTOR w komórkach macierzystych prowadzi też do bardzo dużej produkcji poliamin, niewielkich molekuł pomagających komórkom we wzroście i podziale.
      Okazało się jednak, że gdy komórki macierzyste znajdują się stanie, w którym zdolne są do tak intensywnej regeneracji, są bardziej podatne na mutacje onkogenne. Komórki macierzyste jelit należą do najbardziej aktywnie dzielących się komórek w naszych organizmach. Dzięki nim szybko dochodzi do wymiany wyściółki jelit. Jednak, jako że dzielą się tak często, są głównym źródłem komórek przedrakowych. Autorzy badań zauważyli, że gdy u myszy, które zaczęły jeść po głodówce, uruchomią gen powodujący nowotwór, zwierzęta takie z większym prawdopodobieństwem rozwiną przedrakowe polityp niż w sytuacji, gdy gen zostanie uruchomiony w czasie głodówki czy u zwierząt, które nie głodowały.
      Chcę podkreślić, że to badania na myszach, w których użyliśmy konkretnej mutacji. U ludzi będzie to bardziej skomplikowane. Z badań możemy jednak wyciągnąć następujący wniosek: głodówka jest bardzo zdrowa, jeśli jednak masz pecha i w momencie, gdy kończysz głodówkę komórki twoich jelit zostaną wystawione na działanie mutagenu – na przykład na przypalony stek – może dojść do zwiększenia ryzyka pojawienia się nieprawidłowości, która da początek nowotworowi, wyjaśnia Yilmaz.
      Uczony stwierdził też, że głodówka może przynieść bardzo dużo korzyści osobom, które przechodzą uszkadzającą jelita radioterapię. Obecnie wraz z zespołem bada, czy podobnych korzyści nie można odnieść bez głodówki, przyjmując suplementy poliamin.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...