Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Pierwszy kwantowy obraz próbki biologicznej
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Uczeni z Instytutu Nauk Multidyscyplinarnych im. Maxa Plancka – Melina Schuh, Christopher Thomas i Tabea Lilian Marx – są pierwszymi, którzy zobrazowali cały proces owulacji w czasie rzeczywistym. Obrazowanie, wykonane u myszy, pozwala na badanie jajeczkowania w wysokiej rozdzielczości przestrzennej oraz czasowej i przyczyni się do poszerzenia wiedzy w dziedzinie badań nad płodnością.
Większość kobiet przechodzi owulację około 400 razy w życiu. W czasie fazy płodnej dojrzewanie rozpoczyna 15–30 jajeczek. Jednak tylko największe i najlepiej rozwinięte z nich biorą udział w owulacji, gdy są uwalniane do jajowodów.
Owulacja regulowana jest przez złożone interakcje hormonów, a sam ten proces słabo rozumiemy. Jajniki znajdują się głęboko w organizmie kobiety, trudno uzyskać do nich dostęp badawczy. Ponadto owulacja zachodzi w wąskim okienku czasowym, nie sposób przewidzieć, kiedy jajniki uwolnią kolejne jajeczko. Nic więc dziwnego, że dopiero teraz udało się po raz pierwszy zobrazować ten proces.
Możemy wyróżnić w nim trzy fazy. Pęcherzyk Graffa rozszerza się, kurczy i w końcu uwalnia jajeczko, mówi Melina Schuh, dyrektor Wydziału Mejozy w Instytucie Maxa Plancka. Faza pierwsza, rozszerzanie pęcherzyka, jest napędzana przez uwolnienie kwasu hialuronowego. Naukowcy śledzili pod mikroskopem jak w fazie tej zmienia się rozmiar i kształt pęcherzyka. W czasie owulacji do pęcherzyka napływa płyn, co powoduje jego znaczący wzrost, dodaje Christopher Thomas, współautor badań. Kwas hialuronowy jest niezbędny dla owulacji. Gdy naukowcy zablokowali jego wytwarzanie, pęcherzyk rozszerzał się w mniejszym stopniu i do owulacji nie doszło.
Podczas drugiej fazy, kurczenia się pęcherzyka, komórki mięśni gładkich zewnętrznej warstwy pęcherzyka powodują jego kurczenie się. Gdy naukowcy zablokowali komórkom możliwość kurczenia się, pęcherzyk nie zmniejszył swojej objętości i do owulacji nie doszło. Gdy pęcherzyk pęka, co ma miejsce w trzeciej fazie, jajeczko zostaje uwolnione. Najpierw pęcherzyk wybrzusza się na zewnątrz, następnie pęka, uwalniając płyn pęcherzykowy, komórki ziarniste i, na końcu, jajeczko, mówi Marx.
Po owulacji pęcherzyk przekształca się w ciałko żółte, które wytwarza progesteron przygotowujący macicę do implantacji embrionu. Jeśli jajeczko nie zostanie zapłodnione lub zapłodnione nie zagnieździ się w macicy, ciałko żółte zanika w ciągu 14 dni i rozpoczyna się kolejny cykl.
Nasze badania wykazały, że owulacja to solidny proces. Co prawda do jej rozpoczęcia potrzebny jest sygnał z zewnątrz, jednak cała reszta przebiega już niezależnie od pozostałej części jajnika, gdyż wszystkie niezbędne zasoby i informacje są zawarte w samym pęcherzyku. Dzięki naszej metodzie obrazowania my i inne zespoły naukowe będziemy mogli w przyszłości jeszcze dokładniej zbadać ten mechanizm i zyskać nową wiedzę, która przyda się w badaniach nad płodnością u ludzi, cieszy się Schuh.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Trójce naukowców z Francji i Niemiec udało się aż 38-krotnie zmniejszyć limit dyfrakcyjny. Osiągnęli to pozwalając falom dowolnie odbijać się i rozpraszać w zamkniętej przestrzeni. Dzięki temu udało się określić położenie niewielkiego sześcianu z dokładnością 1/76 długości fali promieniowania mikrofalowego wykorzystanego podczas eksperymentów.
Limit dyfrakcyjny ogranicza dokładność obrazowania czy lokalizacji obiektu i jest związany z dyfrakcją, czyli ugięciem fal wokół materiału. Limit ten, najmniejsza wyczuwalna różnica dla danej długości fali, wynosi 1/2 tej długości. Oznacza to, że w sposób konwencjonalny nie jesteśmy w stanie odróżnić od siebie np. dwóch przedmiotów, jeśli różnią się elementem, którego wielkość jest mniejsza niż 1/2 długości fali za pomocą obiekty te obrazujemy. Stworzono więc różne metody na pokonanie limitu dyfrakcyjnego. Często jednak ich zastosowanie jest trudne bądź niepraktyczne.
Michael del Hougne z Uniwersytetu w Wurzburgu, Sylvain Gigan z Laboratoire Kastler Brossel oraz Philipp del Hougne z Uniwersytetu w Rennes wykorzystali doświadczenia z techniką tzw. kodowanej apertury. W technice tej wykorzystuje się powierzchnię rozpraszającą, taką jak np. wnękę o nieregularnym kształcie umieszczoną pomiędzy oświetlanym obiektem a wykrywaczem. Powierzchnia jest modyfikowana za pomocą maski, która blokuje pewne fale, uniemożliwiając im dotarcie do wykrywacza. Za pomocą wielu pomiarów uzyskiwany jest matematyczny model obserwowanego obiektu.
Badacze wykorzystali tę koncepcję do opracowania techniki jeszcze lepiej oddającej szczegóły poniżej długości fali. Umieścili badany obiekt, wykrywacz i źródło światła wewnątrz wnęki, od której powierzchni odbijały się fale. Metoda ta wykorzystuje fakt, że fale wielokrotnie napotkają na badany obiekt, zanim dotrą do wykrywacza. Wewnątrz wnęki znajdują się też programowalne metapowierzchnie, zmieniające strukturę, na której rozpraszają się fale.
Uczeni testowali swoją technikę umieszczając metalowy sześcian o boku 4,5 cm wewnątrz wnęki o szerokości 1 metra. Do badania obiektu wykorzystali mikrofale o długości 12 cm oraz wykrywacz, z którego sygnały były przetwarzane przez sieć neuronową. Gdy przesunęli sześcian w inne miejsce, byli w stanie określić jego pozycję z dokładnością do 0,16 cm. To ok. 1/76 długości fali użytej do badania, zatem znacznie poniżej limitu dyfrakcyjnego. Dokładność pomiaru zwiększała się, gdy fale mogły odbijać się dłużej.
Technika wymaga jeszcze dopracowania, ale jej twórcy uważają, że przyda się ona do nieinwazyjnego lokalizowania niewielkich obiektów w dużych pomieszczeniach za pomocą fal radiowych lub dźwiękowych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na australijskim University of Queensland powstał pierwszy mikroskop wykorzystujący efekt splątania kwantowego, który przewyższa obecnie dostępne mikroskopy. Pozwala on dostrzec niewidoczne dotychczas struktury biologiczne. Mikroskop będzie niezwykle przydatny w biotechnologii, a wykorzystane przezeń techniki mogą znaleźć szereg zastosowań od nawigacji po obrazowanie medyczne.
Ten przełom pozwoli na rozwój wielu nowych technologii, od doskonalszych systemów nawigacyjnych po lepsze maszyny do rezonansu magnetycznego, mówi profesor Warwick Bowen z Quantum Optics Lab i ARC Centre of Excellence for Engineered Quantum Systems.
W końcu pokazaliśmy czujnik, który przewyższa istniejące technologie niekwantowe. To niezwykle ekscytujące. Mamy tutaj pierwszy dowód na to, że wykorzystanie splątania kwantowego w obrazowaniu może prowadzić do całkowitej zmiany paradygmatu, stwierdza Bowen.
W opracowanej przez australijską armię Quantum Technology Roadmap, czujniki kwantowe mają dokonać rewolucji w dziedzinie opieki zdrowotnej, inżynierii, transporcie czy wykorzystaniu surowców.
Największym osiągnięciem australijskich naukowców jest przekroczenie niepokonanej dotychczas bariery, z którą zmagała się mikroskopia optyczna. Najlepsze mikroskopy optyczne wykorzystują lasery, których światło jest miliardy razy jaśniejsze niż światło słoneczne. Delikatne systemy biologiczne, jak ludzkie komórki, mogą przetrwać w takich warunkach jedynie przez krótki czas. To poważny problem. Tymczasem dzięki kwantowemu splątaniu uzyskaliśmy w naszym mikroskopie 35-procentową poprawę jakości obrazu bez jednoczesnego niszczenia komórek. To pozwoliło nam na zobrazowanie miniaturowych struktur, które normalnie pozostałyby niewidoczne, wyjaśnia Bowen.
Badania Australijczyków zostały opisane na łamach Nature. Były one finansowane przez Biuro Badań Naukowcy US Air Force oraz Australian Resarch Council.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 2018 roku naukowcy z Cornell University zbudowali wysoko wydajny wykrywacz, połączyli go z ptychografią, specjalną metodą obrazowania mikroskopowego i ustanowili światowy rekord obrazowania, uzyskując trzykrotnie większą rozdzielczość obrazu niż najlepsze mikroskopy elektronowe. Teraz ten sam zespół pobił swój własny rekord, dwukrotnie poprawiając rozdzielczość obrazu.
Uzyskano niezwykle wyraźny obraz, a jedyne rozmazane elementy pochodzą od zmian termicznych samych atomów. To nie jest po prostu nowy rekord. Wkroczyliśmy w obszar ostatecznych limitów rozdzielczości. Możemy teraz w bardzo prosty sposób wskazać, gdzie znajdują się atomy. To zaś otwiera całkiem nowe możliwości pomiaru, o których marzyliśmy od dawna. Rozwiązaliśmy też poważny problem, który Hans Bethe zauważył w 1928 roku, poradziliśmy sobie z rozpraszaniem promienia w próbce, mówi Muller.
Dzięki nowym algorytmom jesteśmy teraz w stanie skorygować wszelkie rozmazane kształty do tego stopnia, że największy rozmazany obszar, jaki otrzymujemy wynika z faktu, że same atomy się poruszają, dodaje uczony. Niewykluczone, że obraz można jeszcze poprawić, używając cięższych atomów, które mniej się poruszają, lub też schładzając próbkę. Jednak nawet w temperaturze zera absolutnego w atomach wciąż będzie dochodziło do fluktuacji kwantowych, zatem poprawa nie będzie szczególnie duża w porównaniu z już uzyskanym obrazem.
Najnowsze osiągnięcie naukowców z Cornell University oznacza, że specjaliści będą mogli zlokalizować indywidualne atomy w przestrzeni trójwymiarowej, co nie było możliwe za pomocą dotychczasowych metod. Możliwe będzie tez znalezienie zanieczyszczeń atomowych w różnych materiałach, co przełoży się na stworzenie doskonalszych półprzewodników, katalizatorów czy materiałów wykorzystywanych do budowy komputerów kwantowych. Możliwe będzie też analizowanie atomów na styku dwóch różnych połączonych materiałów.
Bardzo ważnym elementem pracy jest fakt, że nową metodę można też wykorzystać do analizowania próbek biologicznych, a nawet połączeń pomiędzy synapsami w mózgu.
Zastosowana metoda jest czasochłonna i wymaga dostępu do dużych mocy obliczeniowych, jednak w przyszłości dzięki potężniejszym komputerom, metodom maszynowego uczenia i szybszym czujnikom stanie się tańsza i łatwiej dostępna.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Komórki jajowe mają kulisty kształt. Jednak po zapłodnieniu rozpoczyna się ich przemiana w ludzi, psy czy ryby. Tworzą się osie ciała, które decydują, gdzie jest głowa, a gdzie ogon (górna i dolna część ciała człowieka), gdzie brzuch, a gdzie plecy, gdzie strona lewa i strona prawa. Naukowcy z Marine Biological Laboratory (MBL) są pierwszymi, którym udało się obrazować sam początek reorganizacji komórek, która decyduje o ostatecznym kształcie organizmu.
Najbardziej interesującym i tajemniczym zagadnieniem biologii rozwoju jest pochodzenie osi ciała u zwierząt, mówi współautor badań Tomomi Tani. Wraz z Hirokazu Ishim informują oni na łamach Molecular Biology of the Cell, że do rozwoju osi ciała przyczyniają się oboje rodzice. Matka odpowiada za oś brzuch-plecy, a ojciec za oś głowa-ogon. Do określenia planu ciała rozwijającego się embrionu u zwierząt konieczne jest wkład matki i ojca, mówi Tani.
Najnowsze odkrycie nie tylko odpowiada na jedno z fundamentalnych pytań biologicznych, ale może pomóc w stwierdzeniu, dlaczego czasem rozwój przebiega nieprawidłowo. A taka wiedza może przydać się w tak różnych dziedzinach jak medycyna i rolnictwo.
Obowiązująca teoria mówi, że to, jak zostaje ustalona oś ciała zależy od filamentów aktynowych wewnątrz komórki jajowej. Filamenty te odpowiedzialne są za ruch cytoplazmy, zmianę kształtu komórki oraz jej ruch. Odpowiadają też za ruch cytoplazmy po zapłodnieniu. Jednak dotychczas nikomu nie udawało się zobrazować tego procesu, gdyż odbywa się on bardzo szybko i na małych przestrzeniach wewnątrz żywej komórki.
Tani i Ishii wykorzystali fluorescencyjny mikroskop polaryzacyjny – technologię opracowaną przed kilku laty m.in. przez uczonych w MBL, w tym Taniego. Technologia ta pozwala na obrazowanie zjawisk zachodzących na przestrzeni nanometrów.
Za pomocą tej techniki naukowcy obserwowali aktynę w jajach osłonic z rodzaju Ciona. Dzięki spolaryzowanemu światłu i molekułom fluorescencyjnym uczeni byli w stanie obserwować orientację molekuł aktyny.
Gdy Tani i Ishii przyjrzeli się niezapłodnionemu jaju, większość filamentów aktynowych miło przypadkową orientację. Po zapłodnieniu przez jajo przeszła fala jonów wapnia i filamenty aktynowe ułożyły się w jednym kierunku i skurczyły względem osi nachylonej o 90 stopni, pod kątem przyszłej osi brzuch/plecy. Następnie rozpoczął się ruch cytoplazmy. Tworzenie osi ciała rozpoczęło się zaraz po zapłodnieniu.
Naukowcy kontynuują swoje badania. Ich długoterminowym celem jest odkrycie i opisanie sił działających w rozwijających się embrionie, które decydują o jego morfologii i strukturze. Mamy nadzieję, że badania nad molekularnym uporządkowaniem cytoszkieletu pozwolą nam przyjrzeć się zjawiskom mechanicznym, które decydują o morfologii organizmów wielokomórkowych,mówi Tani.
Po lewej widzimy falę jonów wapnia przechodzących przez komórkę jajową po zapłodnieniu. Po prawej zaś – ruch cytoplazmy w tym samym jaju.
Po lewej jajo przed i po zapłodnieniu. Po prawej zmiany orientacji filamentów aktynowych od czasu przed zapłodnieniem po pierwszy podział komórkowy po zapłodnieniu.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.