Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z Uniwersytetu Stanowego Pensylwanii opisali białko bakteryjne, które wykazuje 100 mln razy większą wybiórczość w stosunku do lantanowców (wykorzystywanych m.in. w smartfonach metali ziem rzadkich) niż do innych metali, np. wapnia.

Ponieważ właściwości fizyczne metali ziem rzadkich są bardzo zbliżone, trudno obrać na cel i zebrać tylko jeden konkretny. Zrozumienie, jak wspomniane białko wiąże się z lantanowcami z tak ogromną wybiórczością, może wskazać metody ich detekcji - podkreśla prof. Joseph Cotruvo Jr.

Naukowcy wykryli białko, które nazwali lanmoduliną, w bakterii Methylobacterium extorquens. Występuje ona na liściach i w glebie i odgrywa ważną rolę w obiegu węgla w środowisku. M. extorquens potrzebują lantanowców do prawidłowego działania enzymów, także tych pomagających w przetwarzaniu węgla.

Te bakterie potrzebują lantanowców i innych metali, takich jak wapń, do wzrostu. Niezbędne są im metody na pozyskanie wszystkich metali ze środowiska i upewnienie się, że każdy dociera do właściwego miejsca w komórce. Wydaje się, że M. extorquens wypracowały sobie unikatowy sposób na docieranie do lantanowców w otoczeniu, w którym pierwiastki te są o wiele rzadsze niż np. wapń - opowiada Cotruvo.

Unikatowa budowa białka, którą Cotruvo określił we współpracy z kolegą z uczelni Scottem Showalterem, może wyjaśniać, czemu lantanowce wiąże ono 100 mln razy lepiej niż wapń. Pod nieobecność metalu białko jest w dużej mierze nieustrukturowane, ale gdy metal występuje, zmienia konformację na kompaktową, dobrze ustrukturowaną.

W nowej kompaktowej formie występują 4 motywy "EF-hand". Ludzkie komórki zawierają wiele białek z tymi motywami strukturalnymi; biorą one udział w funkcjach wymagających wykorzystania wapnia, np. w skurczach mięśni czy wyładowaniach neuronów. Białka te wiążą także lantanowce, ale ponieważ u ludzi pierwiastki z tej grupy nie są fizjologicznie istotne, prawdopodobieństwo związania z lantanowcem jest maksymalnie tylko 100 razy większe niż dla wapnia.

W kompaktowej formie lanmoduliny w każdym motywie EF-hand w unikatowej pozycji występuje aminokwas prolina. Amerykanie uważają, że może się to przyczyniać do wybiórczości białka w stosunku do lantanowców.

Mechanizm wybiórczości w stosunku do lantanowców nie jest jasny, ale sądzimy, że wszystko sprowadza się do strukturalnej zmiany zachodzącej w obecności metalu [zależnej od metalu zmiany konformacji]. Strukturalna zmiana jest istotna dla działania białka; niektóre interakcje mogą wystąpić np. tylko przy jego kompaktowej postaci. By wywołać zmianę konformacji, potrzeba bardzo małej ilości lantanowców i o wiele większej, wykraczającej poza możliwości bakterii, ilości wapnia.

Zrozumienie selektywności białka może pomóc w gromadzeniu lantanowców do celów przemysłowych, w tym w ekstrakcji ze ścieków kopalnianych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ultradrobne cząstki przywierają do mikroorganizmów jelitowych, wpływając na ich cykl życiowy, a także komunikację z gospodarzem. Eksperymenty naukowców z Uniwersytetu Jana Gutenberga (JGU) w Moguncji pokazały też, że wiązanie nanocząstek obniża zakaźność Helicobacter pylori, a jak wiadomo, infekcja tym patogenem zwiększa ryzyko zachorowania na raka żołądka.
      Autorzy artykułu z pisma npj Science of Food przekonują, że ich odkrycia będą stanowić bodziec dla dalszych badań epidemiologicznych i jeśli wszystko pójdzie zgodnie z planem, utorują drogę pracom nad specyficznymi suplementami - probiotycznymi nanocząstkami.
      Jedzenie i wchodzące w skład pożywienia nanocząstki mogą wpływać na równowagę mikrobiom-gospodarz [...]. By obniżyć potencjalne ryzyko i korzystnie oddziaływać na zdrowie, musimy zrozumieć oddziaływania nanocząstek z diety - podkreśla prof. David J. McClements z Uniwersytetu Massachusetts w Amherst.
      Przed naszym badaniem nikt tak naprawdę nie sprawdzał, czy, a jeśli tak, to w jaki sposób, nanododatki wywierają bezpośredni wpływ na mikroflorę jelitową - dodaje prof. Roland Stauber z JGU. By oddać, co się dzieje z obecnie używanymi bądź przyszłymi nanododatkami do żywności, analizowaliśmy szeroką gamę technicznych nanocząstek o jasno zdefiniowanych właściwościach. Symulując ich podróż przez różne środowiska przewodu pokarmowego, odkryliśmy, że wszystkie testowane nanomateriały są zdolne do wiązania z bakteriami.
      Wiązanie to ma różne konsekwencje. Z jednej strony pokryte nanocząstkami mikroorganizmy są słabiej rozpoznawane przez układ odpornościowy, co może prowadzić do wzmożonej reakcji zapalnej. Z drugiej jednak okazuje się, że nanocząstki krzemionki hamują zakaźność H. pylori.
      Uderzające było to, że z różnych produktów spożywczych, np. piwa, potrafiliśmy również wyizolować naturalnie występujące nanocząstki, które dawały takie same skutki. Nanocząstki w naszej codziennej diecie nie są [więc] wyłącznie czymś celowo dodawanym. To także drobiny generowane naturalnie podczas przygotowań/obróbki. Nanocząstki są czymś wszechobecnym - opowiada Stauber.
      Niemcy mają nadzieję, że dzięki ich odkryciom uda się opracować strategie uzyskiwania i wykorzystywania syntetycznych bądź naturalnych nanocząstek do modulowania mikrobiomu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Texas w San Antonio (UTSA) dokonano przełomowego odkrycia, które będzie miało olbrzymie znaczenie dla prac nad nowymi lekami. Odkrycie ma związek z fluorem, który tworzy najsilniejsze, po krzemie, wiązania atomowe z węglem.
      Fluor, w postaci fluorków, używany jest zarówno do uzdatniania wody pitnej i w pastach do zębów, jak i szeroko stosowany w chemii medycznej do leczenia nowotworów, w antybiotykach, antydepresantach, sterydach i innych lekach. Fluor stosuje się w lekach, gdyż je stabilizuje i zwiększa ich aktywność biologiczną.
      Przez wiele lat naukowcy z UTSA badali tiole, organiczne związki chemiczne, odpowiedniki alkoholi. W organizmach ssaków tiole mają wpływ na wiele funkcji biologicznych, jak równowaga energetyczna, przesyłanie sygnałów między komórkami, zdrowie serca, stan układu immunologicznego i neurologicznego. Gdy poziomy tioli są stabilne, jesteśmy generalnie w dobrym stanie zdrowia. Gdy rosną i przez dłuższy czas utrzymują się na podwyższonym poziomie, mogą pojawić się takie choroby jak reumatoidalne zapalenie stawów, nowotwory piersi, choroby Alzheimera i Parkinsona.
      Za regulację poziomu tioli odpowiadają dioksygenaza cysteinowa (CDO) i dioksygenaza cystaminowa (ADO). Gdy poziom tioli rośnie, CDO i ADO tworzą wzmacniacze katalizy, które szybko usuwają nadmiar tioli z organizmu. Jako, że nie wiadomo dokładnie, w jaki sposób te wzmacniacze są tworzone, uczeni z UTSA postanowili to zbadać. I wówczas dokonali ważnego odkrycia.
      Na potrzeby swoich badań stworzyli nową formę CDO z wyjątkowo silnymi wiązaniami węgiel-fluor. Sądzili, że enzymy nie będą w stanie rozerwać tych wiązań i nie powstanie wzmacniacz. Okazało się jednak, że zmodyfikowane CDO nadal było w stanie rozerwać wiązania i stworzyć katalizator. W ten sposób po raz pierwszy wykazano, że wiązania węgiel-fluor mogą być rozrywane w proteinach na drodze utleniania. To zaś oznacza, że w organizmie człowieka również może zachodzić taki proces.
      To bardzo ważne odkrycie. Ponad 20% leków zawiera fluor. Wiązania węgiel-fluor są odporne na procesy metaboliczne w organizmie, przez co zawierający je lek może dłużej w nim przebywać. Fluorek pomaga też lekom na przenikanie przez ściany komórkowe. Od dawna sądzono, że wiązania węgiel-fluor są odporne na zrywanie. Najnowsze odkrycie pokazuje, że tak nie jest, mówi Michael Doyle, dziekan wydziału Chemii Medycznej na UTSA.
      Okazuje się zatem, i jest to odkrycie niezwykle ważne dla rozwoju leków, że wiązania C-F mogą być w organizmie mniej trwałe niż sądzono, a tym samym słabiej chronią substancje lecznicze przed procesami metabolicznymi organizmu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...