Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Układ nerwowy bezpośrednio kontroluje namnażanie komórek macierzystych

Recommended Posts

Namnażanie komórek macierzystych jest bezpośrednio kontrolowane przez autonomiczny układ nerwowy (AUN).

Gdybyśmy znaleźli sposób na obranie na cel i kontrolowanie namnażania komórek macierzystych w organizmie, uzyskalibyśmy [wymierne] korzyści medyczne, w tym możność wyłączania namnażania nowotworowych komórek macierzystych lub wywołania namnażania somatycznych komórek macierzystych w miejscach, gdzie zależy nam na powstaniu nowej tkanki - tłumaczy Elizabeth Davis, doktorantka z Uniwersytetu Illinois.

Przed badaniami Davis naukowcy wiedzieli, że autonomiczny układ nerwowy jest zaangażowany w namnażanie komórek macierzystych, nie było jednak wiadomo, czy wpływ ten ma charakter pośredni, czy bezpośredni. Wpływ bezpośredni oznaczałby zaś większe implikacje dla farmakoterapii różnych chorób.

Gdyby się np. chciało zmienić potencjał regeneracyjny narządu, nie trzeba by stymulować bądź hamować aktywności neuronów. Zamiast tego wystarczyłoby ustalić, jakie neuroprzekaźniki kontrolują namnażanie i później podać je komórkom macierzystym na drodze celowanej aplikacji - opowiada prof. Megan Dailey.

Podczas eksperymentów, których wyniki opisano na łamach Physiological Reports, Amerykanie skupili się na komórkach macierzystych z nabłonka jelitowego myszy. Okazało się, że mają one receptory neuroprzekaźników AUN i że neuroprzekaźniki zmieniają ich zachowanie (tego właśnie należało się spodziewać w przypadku zależności bezpośredniej).

Wiedzieliśmy, że nerwy AUN wchodzą w bliski kontakt z komórkami nabłonka jelitowego, w tym z komórkami macierzystymi, ale nie mieliśmy pojęcia, czy neuroprzekaźniki mogą się wiązać z komórkami macierzystymi. Kiedy wyizolowaliśmy komórki macierzyste i stwierdziliśmy, że są one wyposażone receptory neuroprzekaźników AUN, zdobyliśmy brakujący element układanki - dodaje Davis.

By zademonstrować, że zachowanie komórek macierzystych zmieniło się w wyniku stymulacji przez AUN, naukowcy hodowali komórki nabłonka jelitowego i wystawiali je na oddziaływanie wysokich stężeń 2 neuroprzekaźników: acetylocholiny i noradrenaliny. Acetylocholina jest neurotransmiterem układu przywspółczulnego, a noradrenalina układu współczulnego (bierze udział w reakcji walki lub ucieczki).

Kiedy symulowaliśmy aktywację któregoś z tych układów, widzieliśmy spadek namnażania komórek macierzystych - wyjaśnia Dailey, która uważa, że organizm może unikać wkładania energii w produkcję nowych komórek, gdy aktywny jest układ odpowiedzialny za mobilizację organizmu. Szczytowe okresy odpoczynku i trawienia także nie wydają się dobrym czasem na tworzenie nowych komórek; procesy komórkowe związane z trawieniem tworzą bowiem wolne rodniki, które grożą uszkodzeniem nowych komórek.

Choć badanie skupiało się na nabłonku jelitowym, Davis i Dailey sądzą, że AUN bezpośrednio kontroluje namnażanie komórek macierzystych także w innych częściach ciała.

[...] AUN jest kontrolowany przez [...] ośrodkowy układ nerwowy. Sądzimy, że mózg kontroluje regenerację wszystkich tych tkanek via AUN.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców zaprojektował hydrożel, który pozwala hodować wykorzystywane w immunoterapii nowotworów limfocyty T. Hydrożele te imitują węzły chłonne, gdzie limfocyty T się namnażają. Zespół ma nadzieję, że technologia szybko znajdzie zastosowanie w klinikach.
      Uczeni, których artykuł ukazał się w piśmie Biomaterials, rozpoczęli projekt, którego celem jest drukowanie nowego hydrożelu w 3D. Ma to przyspieszyć transfer technologii na rynek.
      Hydrożele 3D są wykonywane z 1) poli(tlenku etylenu), biokompatybilnego polimeru szeroko wykorzystywanego w biomedycynie, oraz 2) drobnocząsteczkowej heparyny. Polimer zapewnia właściwości strukturalne i mechaniczne konieczne do wzrostu limfocytów T, a heparyna "kotwiczy" różne biocząsteczki, np. cytokinę CCL21; CCL21 występuje w węzłach chłonnych i odgrywa ważną rolę w migracji i proliferacji komórek.
      Naukowcy wyjaśniają, że w leczeniu nowotworów można stosować adoptywną terapię komórkową (ang. adoptive cell therapy). Polega ona na wykorzystaniu zmodyfikowanych in vitro własnych komórek odpornościowych pacjenta i zwrotnym ich podaniu do krwiobiegu.
      Jej zastosowanie jest ograniczane przez obecne podłoża hodowlane, ponieważ nie są one na tyle skuteczne, by umożliwić namnażanie i wzrost odpowiedniej liczby terapeutycznych limfocytów T w krótkim czasie i w opłacalny ekonomicznie sposób - podkreśla Judith Guasch z Institut de Ciència de Materials de Barcelona (ICMAB-CSIC).
      Zespół będzie próbował drukować kompatybilne z bioreaktorami duże hydrożele 3D. Celem ma być namnażanie limfocytów T w bardziej wydajny sposób. Obecnie trwa poszukiwanie partnerów przemysłowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Siódmego marca z przylądka Canaveral wystartowała Space X CRS-20 - misja zaopatrzeniowa do Międzynarodowej Stacji Kosmicznej (MSK). Znajdowało się tam m.in. 250 probówek z Uniwersytetu w Zurychu z ludzkimi somatycznymi/tkankowymi komórkami macierzystymi, nazwanymi także dorosłymi komórki macierzystymi (ang. adult stem cells, ASC). W ciągu miesiąca rozwiną się one w kość, chrząstkę itp.
      Prof. Oliver Ullrich i dr Cora Thiel z UZH Space Hub chcą w ten sposób przetestować koncepcję produkcji ludzkich tkanek w stanie nieważkości z przeznaczeniem dla medycyny transplantacyjnej i precyzyjnej. Szwajcarzy wspominają też o alternatywie dla eksperymentów na zwierzętach.
      Wykorzystujemy nieważkość jako narzędzie - wyjaśnia Thiel. Siły fizyczne takie jak grawitacja wpływają na różnicowanie komórek macierzystych oraz na formowanie i regenerację tkanki. Naukowcy zakładają, że ze względu na panującą na MSK mikrograwitację nowo powstałe komórki będą się same organizować w trójwymiarowe tkanki (bez dodatkowej macierzy czy innych struktur pomocniczych).
      Eksperyment będzie realizowany w mobilnym minilaboratorium - module CubeLab amerykańskiej firmy Space Tango. Moduł składa się z zamkniętego, sterylnego systemu, w którym komórki macierzyste mogą się namnażać i różnicować w stałej temperaturze.
      Jeśli testy przebiegną pomyślnie, planowane jest stopniowe przejście od małego laboratorium do produkcji na większą skalę. W przyszłości innowacyjny proces można by wykorzystać do uzyskiwania w przestrzeni kosmicznej przeszczepów tkankowych (komórki macierzyste pobierano by od pacjenta).
      Ulrich wspomina też o zastosowaniach w medycynie precyzyjnej. Sztucznie wytwarzane autologiczne ludzkie tkanki można by wykorzystać do określenia, jaka kombinacja leków najlepiej nadaje się dla danej osoby. Poza tym wyprodukowane w kosmosie ludzkie tkanki i struktury organopodobne mogłyby pomóc w zmniejszeniu liczby eksperymentów na zwierzętach.
      Duży udział w projekcie ma Airbus (zarówno logistyczny, jak i w zakresie zaprojektowania wnętrza pojemników transportowych).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Japończycy zaproponowali nowy sposób zapobiegania odrzuceniom przeszczepów. Podczas testów posługiwali się indukowanymi pluripotencjalnymi komórkami macierzystymi (ang. induced pluripotent stem cells, iPSCs).
      Zespół prof. Kena-ichiro Seiny z Instytutu Genetyki Uniwersytetu Hokkaido odkrył, że pozyskane z iPSCs grasiczne komórki nabłonkowe mogą regulować odpowiedź immunologiczną na przeszczep skóry, wydłużając jego przeżywalność.
      Grasica to narząd wchodzący w skład układu limfatycznego. Znajduje się w śródpiersiu. Jest źródłem limfocytów T, które kontrolują odpowiedź immunologiczną, w tym odrzucenie narządu, i są blisko związane np. z autotolerancją immunologiczną.
      Podczas wcześniejszych badań występowały problemy z wydajnym pozyskiwaniem grasicznych komórek nabłonkowych z iPSCs. Japończycy stwierdzili jednak, że wprowadzenie ważnego genu grasicy Foxn1 do mysich indukowanych pluripotencjalnych komórek macierzystych wspomaga proces różnicowania.
      Podczas eksperymentów zespół przeszczepiał myszom-biorcom agregaty grasicznych komórek nabłonkowych pozyskanych z iPSCs oraz skórę kompatybilnych genetycznie gryzoni.
      Okazało się, że gdy w ramach konkretnej procedury zawczasu przeszczepiano grasiczne komórki nabłonkowe, znacząco wydłużało to przeżywalność przeszczepów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komórki macierzyste łożyska, zwane Cdx2, regenerują komórki serca po zawale, donoszą naukowcy z Icahn School of Medicine. Ich odkrycie może przyczynić się do powstania nowych standardów leczenia chorób kardiologicznych.
      Dotychczas sądzono, że komórki Cdx2 regenerują jedynie łożysko podczas wczesnego rozwoju embrionalnego. Nigdy nie wykazano ich zdolności do regenerowania innych organów, dlatego to takie ekscytujące. Odkrycie to może przyczynić się do powstania terapii regeneracji innych organów niż serce. One są superbohaterami świata komórek macierzystych w tym sensie, że potrafią namierzyć miejsce uszkodzenia i dotrzeć bezpośrednio do niego podróżując wzdłuż układu krążenia oraz potrafią uniknąć odrzucenia przez układ odpornościowy gospodarza, mówi główna autorka badań, doktor Hina Chaudhry.
      Już wcześniej specjaliści z Mount Sinai zauważyli, że różnorodna populacja komórek macierzystych z mysiego łożyska pomaga w naprawie uszkodzonego serca ciężarnej myszy. Podczas najnowszych badań wykazali, że komórki macierzyste z łożyska wędrują bezpośrednio do miejsca uszkodzenia i tam zmieniają się w komórki serca. Celem naukowców było zbadanie, które konkretnie komórki biorą udział w regeneracji serca. Na początku przyjrzeli się komórkom Cdx2, gdyż były one najczęściej występującymi komórkami podczas wcześniejszych badań. Odkryli, że to właśnie Cdx2 stanowią aż 40% wszystkich komórek biorących udział w regeneracji mięśnia sercowego.
      Aby przetestować właściwości Cdx2 naukowcy wywołali atak serca u trzech grup samców myszy. Jednej z nich wstrzyknięto komórki Cdx2 pobrane z łożyska pod koniec ciąży, drugiej wstrzyknięto komórki łożyska, które nie były komórkami Cdx2, a trzeciej podano sól fizjologiczną. Myszy zbadano za pomocą rezonansu magnetycznego natychmiast po ataku serca oraz trzy miesiące po podaniu komórek lub soli fizjologicznej.
      Okazało się, że u wszystkich myszy, którym podano komórki Cdx2 doszło do znaczącej regeneracji mięśnia sercowego. W ciągu trzech miesięcy komórki Cdx2 zdołały migrować bezpośrednio do miejsca uszkodzenia, gdzie utworzyły nowe naczynia krwionośne i kardiomiocyty. U pozostałych dwóch grup myszy nie zauważono żadnych oznak regeneracji.
      Naukowcy zauważyli jeszcze dwie bardzo istotne właściwości Cdx2. Zawierały one wszystkie proteiny embrionalnych komórek macierzystych, co oznacza, że prawdopodobnie mogą regenerować dowolny organ. Ponadto zawierały dodatkowe proteiny, dzięki którym mogły wędrować bezpośrednio do miejsca uszkodzenia, czego zwykłe komórki nie potrafią, ponadto były w stanie unikać układu immunologicznego gospodarza. Po ich wstrzyknięciu nie dochodziło do odrzucenia komórek.
      To kluczowe właściwości dla rozwoju terapii wykorzystujących ludzkie komórki macierzyste. Byliśmy w stanie wyizolować komórki Cdx2 również z ludzkich łożysk. Mamy nawieję, że dzięki temu opracujemy lepsze niż dotychczas metody leczenia mięśnia sercowego. Do tej pory testowano na ludziach terapie z użyciem komórek, o których z góry nie było wiadomo, czy utworzą komórki serca oraz używano komórek embrionów, co rodziło problemy etyczne oraz problemy z ich dostępnością. Tymczasem na całym świecie łożyska się po prostu wyrzuca, co oznacza, że mamy do czynienia z ich niemal niewyczerpanym źródłem, mówi Chaudhry.
      Uzyskane wyniki bardzo nas zaskoczyły. Dotychczas żadne inne komórki nie zmieniały się w warunkach laboratoryjnych w kardiomiocyty. Te nie tylko to robiły, ale dokładnie wiedziały, gdzie doszło do uszkodzenia i tam podążały z krwioobiegiem, dodaje doktor Sangeetha Vadakke-Madathil.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Włoscy i hiszpańscy naukowcy zauważyli, że gdy do hodowli komórek raka jelita grubego doda się miodu z chruściny jagodnej (Arbutus unedo), zwanej też drzewem truskawkowym, zahamowuje to ich namnażanie. Zmniejsza się też zdolność tworzenia kolonii.
      Autorzy raportu z Journal of Functional Foods mają nadzieję, że obiecujące rezultaty i potencjał tego typowo śródziemnomorskiego produktu potwierdzą się w modelach in vivo.
      Miód z chruściny jagodnej (ang. strawberry-tree honey, STH) ma gorzki smak przypominający kawę i ciemną barwę. Samo drzewo truskawkowe występuje w herbie Madrytu.
      Naukowcy z Uniwersytetów w Vigo i Grenadzie oraz Università Politecnica delle Marche przebadali potencjał wyjątkowego miodu w zakresie walki z rakiem jelita grubego. Jak podkreślają, głównymi składnikami fenolowymi są kemferol i kwas galusowy.
      Podczas testów laboratoryjnych wykazano, że miód hamuje namnażanie 2 linii komórek rakowych: HCT-116 i LoVo.
      Cytotoksyczność i przeciwnowotworowy wpływ  rosły wraz z czasem terapii i dawką. Miód zatrzymywał cykl komórkowy na fazie S oraz G2/M. Regulował też geny cyklu komórkowego, w tym cykliny D1, cykliny E, CDK2, CDK4, p21Cip, p27Kip i p-RB. Oprócz tego miód hamował migrację komórek, obniżał zdolność tworzenia kolonii oraz wywoływał apoptozę, modulując kluczowe geny i czynniki apoptyczne.
      [STH] hamuje receptor czynnika wzrostu naskórka [ang. epidermal growth factor receptor, EGFR] i jego szlaki sygnałowe - opowiada Maurizio Battino.
      Zaobserwowano też inne istotne klinicznie zjawiska, m.in. obniżenie poziomu pewnych czynników transkrypcyjnych, np. Nrf2, a także spadek wszystkich parametrów oddychania mitochondrialnego i glikolizy komórek rakowych. Poza tym hiszpańsko-włoski zespół wspomina o znaczącym stresie oksydacyjnym; wskazywały na to wzrost wewnątrzkomórkowej produkcji reaktywnych form tlenu (RFT), uszkodzenia lipidów i białek oraz spadek aktywności enzymu przeciwutleniającego. Żadnego z tych zjawisk nie stwierdzono po dodaniu miodu do zdrowych komórek [fibroblastów skóry ludzkiej].
      Battino podkreśla, że potrzebne są badania na zwierzętach. Nasze wyniki stanowią jedynie punkt wyjścia do oceny potencjalnych biologicznych i przeciwnowotworowych właściwości miodu z drzewa truskawkowego. Wskazują one główne mechanizmy molekularne, za pośrednictwem których miód może działać [...].

      « powrót do artykułu
×
×
  • Create New...