Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Izomery pierwiastków superciężkich mogą być znacznie bardziej stabilne niż dotąd sądzono

Recommended Posts

Praca zespołu teoretyków z Narodowego Centrum Badań Jądrowych i Uniwersytetu Zielonogórskiego wskazuje, że niektóre stany izomeryczne pierwiastków superciężkich mogą mieć czasy życia mierzone w sekundach, a więc dziesiątki tysięcy razy dłuższe niż czasy życia ich bardzo niestabilnych stanów podstawowych. Jeśli takie egzotyczne stany jądrowe zostaną wytworzone eksperymentalnie, będą wystarczająco stabilne, by badać ich własności chemiczne.

Tablica Mendelejewa zawiera obecnie 118 pierwiastków, ale tylko 80 z nich ma izotopy stabilne. Jądra izotopów niestabilnych wcześniej czy później ulegają rozpadowi. W niektórych przypadkach czas połowicznego rozpadu jest bardzo długi, liczony w milionach lat, w innych czas ten wynosi mniej niż milionowe części sekundy. Nietrwałe są wszystkie izotopy pierwiastków najcięższych. Czasy życia krótsze niż sekunda nie pozwalają przy obecnym stanie techniki ustalić własności chemicznych pierwiastka, w szczególności grupy układu okresowego, do której należy.

Jądra atomowe są układami złożonymi z protonów i neutronów, które oddziałują między sobą w sposób, który obecnie potrafimy opisać jedynie w przybliżeniu. W najcięższych jądrach łączna liczba nukleonów - protonów i neutronów - sięga 300. W świecie makroskopowym, znanym z codziennego doświadczenia, układy złożone mogą ulegać zaburzeniom, np. zaczynają drgać lub obracać się, pozostając nadal związane. W świecie układów złożonych tworzących jądra atomowe, którym rządzą prawa fizyki kwantowej, także mogą wystąpić zaburzenia, a odpowiadają im przejścia układów do stanów wzbudzonych. Różnica – i w gruncie rzeczy istota świata w skali kwantowej – polega na tym, że energie i inne parametry kwantowych stanów wzbudzonych, nie mogą w wyniku zaburzenia zmienić się dowolnie. Dopuszczalne zmiany są ściśle porcjowane czyli skwantowane.

Jądro w stanie wzbudzonym ma energię większą od energii stanu podstawowego i na ogół szybko, w czasie rzędu jednej bilionowej części sekundy, powraca do niego, oddając energię wzbudzenia w postaci emisji kwantów gamma. Jednak w niektórych jądrach zdarzają się takie stany wzbudzone, które trwają przez czas wyraźnie dłuższy – nazywa się je izomerami. Jednym z przejawów ich wewnętrznego wzbudzenia może być zmiana spinu, czyli kwantowego odpowiednika momentu pędu, mierzącego jak „szybko wirują składniki układu”. Jądra w stanie izomerycznym tworzą atomy o tych samych własnościach chemicznych co jądra w stanie podstawowym.

W 2001 roku odkryto w ośrodku GSI w Niemczech izomer izotopu pierwiastka darmsztadt o liczbie masowej 270. Okazało się, że rozpada się on poprzez emisję cząstki alfa, tak jak większość pierwiastków superciężkich, ale jego czas życia jest ok. 60 razy dłuższy niż czas życia tego samego izotopu w stanie podstawowym. Izomery żyjące dłużej niż stan podstawowy znane były w przypadku lżejszych jąder. Jednak rozpad izomeru darmsztadtu poprzez emisję cząstki alfa oznaczał, że typowy rozpad elektromagnetyczny (gamma) jest dla tego jądra mniej prawdopodobny. Pojawiło się naturalne pytanie, czy istnieją też inne izomery pierwiastków superciężkich, których czasy życia są wydłużone w stosunku do czasów życia ich stanów podstawowych.

Zespół polskich fizyków podjął próbę oceny efektów odpowiedzialnych za wzbronienie rozpadu alfa. Naukowcy, przeprowadzając obliczenia i oszacowania, poszukiwali takich jąder superciężkich, dla których rozpad alfa byłby najbardziej wzbroniony. Można oczekiwać, że jądra takie są najlepszymi kandydatami na długożyciowe izomery.

Czysto eksperymentalne określenie struktury stanu wzbudzonego jest w zasadzie niemożliwe – wyjaśnia prof. Michał Kowal, kierownik Zakładu Fizyki Teoretycznej NCBJ. Podejrzewano dotychczas, że za obserwowaną stabilność izomeru darmsztadt-270m odpowiedzialne jest wzbudzenie pary neutronowej. Z naszych rachunków wynika, że o stabilności decydują raczej wzbudzenia protonowe.

Stany wzbudzone, z którymi mamy tu do czynienia, można wyobrażać sobie jako układy, w których część nukleonów – na przykład dwa protony, dwa neutrony lub obie te pary jednocześnie – nie znajduje się w swym podstawowym położeniu, lecz krąży wokół rdzenia jądra w tę samą stronę. W niektórych jądrach taki stan wzbudzony może mieć całkowity spin o wartości sięgającej 19 lub 20 stałych Plancka. Dominującym kanałem rozpadu rozważanych jąder jest rozpad alfa, czyli emisja jądra helu zbudowanego z dwóch protonów i dwóch neutronów. Rozpad alfa jąder ze stanów izomerycznych może zachodzić do stanu podstawowego lub do któregoś ze stanów wzbudzonych jądra potomnego (końcowego). Nikt dziś nie umie obliczyć dokładnie czasu życia izomeru ze względu na rozpad alfa – dodaje prof. Kowal. Wiadomo jednak, że wzbronienie rozpadu alfa związane jest z co najmniej trzema przyczynami: różnicą struktury lub spinu stanów początkowego i końcowego oraz różnicą energii tych stanów. Rozpad alfa do jądra potomnego w stanie podstawowym wymaga zmiany spinu jądra o dwadzieścia jednostek stałej Plancka. To bardzo dużo! Bariera centryfugalna związana z taką zmianą jest ogromna i praktycznie całkowicie blokuje ten rozpad. Ponadto, ze względu na zupełnie odmienną strukturę stanów początkowego i końcowego, rozpad jest dodatkowo silnie wzbraniany. Te dwa efekty powodują, że rozpad do stanu podstawowego jądra potomnego będzie niesłychanie mało prawdopodobny. Z kolei rozpad do jądra potomnego w stanie wzbudzonym o podobnym spinie co pierwotne jądro izomeryczne, zachodzi z dużym prawdopodobieństwem jedynie wtedy, gdy stan ten ma odpowiednio niską energię wzbudzenia w porównaniu do energii wzbudzenia jądra emitującego. W przypadku niektórych rozważanych przez nas jąder tak nie jest i dlatego podejrzewamy, że dla tych stanów początkowych wystąpi silne stłumienie rozpadu alfa, a w konsekwencji stan izomeryczny będzie miał długi czas życia.

Praca polskich fizyków ukazała się w czasopiśmie Physical Review C i została zaprezentowana na cyklu tegorocznych letnich konferencji fizyki jądrowej. Analizowaliśmy egzotyczne stany w najcięższych jądrach o parzystych liczbach protonów i neutronów – opowiada prof. Janusz Skalski (NCBJ). Opisaliśmy mechanizm wzbronienia i podaliśmy kandydatów na długo żyjące stany jądrowe. Przeprowadzone przez nas obliczenia i oszacowania wskazują, że długożyciowe stany izomeryczne o strukturze jednoczesnego wzbudzenia dwóch par – protonowej i neutronowej, powinny występować w czterech izotopach darmsztadtu. Nie spodziewamy się wystąpienia takich izomerycznych długo żyjących konfiguracji w izotopach pierwiastków o liczbach atomowych Z=106, 108 i 112.

„Przewidywane przez nas wzbronienia rozpadu alfa stanów dwuprotonowych są duże dla właściwie wszystkich jąder darmsztadtu” – uzupełnia dr Piotr Jachimowicz (Uniwersytet Zielonogórski). Oszacowane w pracy czasy życia tych izomerów to setki, a nawet tysiące milisekund czyli o trzy do pięciu rzędów wielkości więcej niż czasy życia ich stanów podstawowych.

Przedstawiony wynik to jak na razie tylko przewidywania teoretyczne. Naukowcy liczą jednak na to, że w niedługim czasie uda się ich przewidywanie sprawdzić eksperymentalnie. Jest całkiem prawdopodobne, że podobne stany były już wytworzone w prowadzonych w przeszłości eksperymentach, ale nikt ich nie zauważył, bo nastawiano się w tych pomiarach na czasy życia znacznie krótsze – wyjaśnia prof. Kowal. Obecnie nie powinno być większych problemów z wykonaniem odpowiednich pomiarów. Kilka laboratoriów na świecie dysponuje odpowiednimi możliwościami. Być może takie doświadczenia będzie można za kilka lat przeprowadzić także w Warszawie, jeśli zostanie zrealizowany projekt zakupienia nowego cyklotronu dla Środowiskowego Laboratorium Ciężkich Jonów na Uniwersytecie Warszawskim. Jeśli nasze przewidywania co do stabilności izomerów zostaną potwierdzone, to otworzą się zupełnie nowe możliwości dla badań chemii pierwiastków superciężkich.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      European XFEL i Narodowe Centrum Badań Jądrowych (NCBJ) w Otwocku-Świerku pod Warszawą zamierzają ustanowić pierwsze ultraszybkie połączenie komputerowe Niemiec i Polski. Celem przedsięwzięcia jest wykorzystanie Centrum Superkomputerowego CIŚ w NCBJ do przetwarzania i analizy danych generowanych w European XFEL.
      Dedykowane połączenie komputerowe pomiędzy Hamburgiem i NCBJ będzie zapewniało szybkość transferu 100 gigabitów na sekundę (Gbit/s). Z wyjątkiem szybszego połączenia z DESY, to połączenie będzie około 100 razy szybsze niż obecne typowe połączenie internetowe European XFEL z innymi instytutami badawczymi. Dzięki niemu transfer danych dla średniego eksperymentu w obiekcie zajmuje około miesiąca . Dla porównania, szybkie łącza internetowe dla gospodarstw domowych zazwyczaj zapewniają około 250 Mb/s przy pobieraniu danych. Nowe połączenie będzie co najmniej 400 razy szybsze.
      W projekcie instalacji nowego szybkiego połączenia dla przesyłu danych, wraz z European XFEL i NCBJ, wezmą również udział: Niemiecka Krajowa Sieć Badań i Edukacji (DFN), Centrum Superkomputerowo-Sieciowe w Instytucie Chemii Bioorganicznej w Poznaniu (PCSS), Naukowa i Akademicka Sieć Komputerowa (NASK) oraz Deutsches Elektronen-Synchrotron (DESY). Pod koniec maja tego roku partnerzy podpisali protokół ustaleń, który posłuży jako podstawa i punkt wyjścia do ustanowienia nowego szybkiego połączenia. Można je w dużej mierze zbudować na istniejącej infrastrukturze technicznej, ale trzeba będzie dodać pewne szczególne elementy. Na przykład połączenie między niemieckimi i polskimi sieciami badawczymi będzie możliwe dzięki Uniwersytetowi Europejskiemu Viadrina we Frankfurcie nad Odrą i sąsiedniemu polskiemu miastu Słubice.
      Połączenie z NCBJ zapewni dodatkowe zasoby uzupełniające obecne zlokalizowane w Centrum Obliczeniowym DESY, gdzie wszystkie dane eksperymentalne z europejskiego XFEL były dotychczas analizowane i gdzie większość przetwarzania danych będzie nadal wykonywana.
      Dzięki laserowi rentgenowskiemu dostarczającemu do 27 000 impulsów na sekundę, najszybsze detektory urządzenia umożliwiają przechwytywanie do 8000 obrazów w wysokiej rozdzielczości na sekundę. W połączeniu z innymi danymi z lasera rentgenowskiego i jego instrumentów badawczych uzyskuje się ogromny strumień danych, wymagający specjalnego zarządzania i analizy w celu zapewnienia prawidłowego uzyskiwania informacji naukowych. Strumień danych może osiągnąć nawet wielkość 1 petabajta na tydzień w szczytowym czasie działania użytkownika, co odpowiada milionowi gigabajtów (GB). Analiza tych danych stanowi podstawę do określenia trójwymiarowej struktury molekuł, badania niezwykle szybkich procesów za pomocą tak zwanych filmów molekularnych oraz badania nowych i ultraszybkich zjawisk w badaniach materiałowych.
      Robert Feidenhans’l, dyrektor zarządzający European XFEL, powiedział: Współpraca z NCBJ w dziedzinie analizy danych jest przełomowym krokiem w kierunku coraz ściślejszego powiązania badań w Europie. Dodatkowe zasoby obliczeniowe nie tylko zwiększą wydajność, ale również zapewnią większą elastyczność operacyjną, co jest bardzo mile widziane. Musimy zwiększyć wymaganą wydajność obliczeniową dla naszych eksperymentów i cieszymy się, że wspólnie z naszymi partnerami NCBJ i DESY znaleźliśmy znakomite rozwiązanie.
      European XFEL to europejski laser na swobodnych elektronach zbudowany międzynarodowym wysiłkiem w Hamburgu w Niemczech. Narodowe Centrum Badań Jądrowych jest polskim współudziałowcem tej inwestycji. XFEL rozpoczął badania we wrześniu 2017 r. W liczącym ponad 3 km długości tunelu elektrony najpierw rozpędzane są do prędkości bliskiej prędkości światła, a następnie przepuszczane są przez specjalnie ukształtowane pole magnetyczne, co zmusza je do emisji promieniowania elektromagnetycznego o bardzo dobrze kontrolowanych parametrach. Wytworzone w ten sposób wiązki rentgenowskie docierające do hali eksperymentalnej w ultrakrótkich impulsach mogą być wykorzystywane przez fizyków, chemików, biologów i inżynierów do badania materii i procesów w niej zachodzących.
      PolFEL to polski laser na swobodnych elektronach budowany w NCBJ w Świerku na bazie doświadczeń zdobytych przy budowie lasera XFEL w Hamburgu. PolFEL będzie jedynym tego typu urządzeniem w Europie północno-wschodniej. Ze względu na swoją konstrukcję, w tym nadprzewodzące źródło elektronów opracowane przez naukowców ze Świerka, laser będzie oferował możliwości wykonywania badań dotąd niedostępnych na żadnym urządzeniu na świecie.
      Narodowe Centrum Badań Jądrowych jest instytutem działającym na podstawie przepisów ustawy o instytutach badawczych. Ministrem nadzorującym instytut jest minister energii. NCBJ jest największym instytutem badawczym w Polsce zatrudniającym ponad 1100 pracowników, w tym ponad 200 osób ze stopniem naukowym doktora, z czego ponad 60 osób ma status samodzielnych pracowników naukowych. W NCBJ pracuje ponad 200 osób z tytułem zawodowym inżyniera. Główna siedziba instytutu znajduje się w Otwocku w dzielnicy Świerk, gdzie zlokalizowany jest ośrodek jądrowy należący do NCBJ, w tym reaktor badawczy Maria. Instytut prowadzi badania naukowe i prace rozwojowe oraz wdrożeniowe w obszarze powiązanym z szeroko rozumianą fizyką subatomową, fizyką promieniowania, fizyką i technologiami jądrowymi oraz plazmowymi, fizyką materiałową, urządzeniami do akceleracji cząstek oraz detektorami, zastosowaniem tych urządzeń w medycynie i gospodarce oraz badaniami i produkcją radiofarmaceutyków. Instytut posiada najwyższą kategorię A+ przyznaną w wyniku oceny polskich jednostek naukowych dokonanej w 2017 r. Pozycję naukową instytutu wyznacza także liczba publikacji (ok. 500 rocznie) i liczba cytowań mierzona indeksem Hirscha (ponad 140). Są to wartości lokujące NCBJ w pierwszej piątce wśród wszystkich jednostek badawczych i akademickich w Polsce prowadzących porównywalne badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ubiegłą środę (12 czerwca) w Wiedniu ogłoszono listę eksperymentów, które w ramach współpracy Chin i ONZ znajdą się na pokładzie chińskiej stacji kosmicznej. Wśród dziewięciu przyjętych do realizacji projektów znalazł się eksperyment POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station. Projekt przygotowało konsorcjum z udziałem Narodowego Centrum Badań Jądrowych (NCBJ).
      Od ponad 50 lat naukowcy poprzez detektory umieszczone na satelitach, obserwują na niebie silne rozbłyski promieniowania gamma. Ich pochodzenie przez lata było tajemnicą, dziś wiąże się je z dwoma najbardziej energetycznymi typami eksplozji we Wszechświecie – zderzeniami gwiazd neutronowych bądź też gwiazdy neutronowej z czarną dziurą oraz z wybuchami hipernowych, kończącymi życie najmasywniejszych gwiazd. Wiemy, że podczas tych zjawisk uwalniana jest ogromna energia, jednak nadal nie całkiem rozumiemy, jakie procesy prowadzą do emisji najbardziej energetycznej części powstającego w ich trakcie promieniowania – wyjaśnia prof. Agnieszka Pollo, kierownik Zakładu Astrofizyki NCBJ. Sądzimy, że dużą rolę odgrywa pole magnetyczne układu będącego źródłem rozbłysku. Aby zbadać tę hipotezę, należy zebrać jak najwięcej informacji na temat polaryzacji docierającego do nas podczas rozbłysku promieniowania gamma. Kosmiczne promienie gamma są absorbowane przez atmosferę i nie docierają do powierzchni Ziemi, dlatego obserwacje rozbłysków gamma i ich polaryzacji trzeba prowadzić na przykład na stacji kosmicznej. Pierwsza współorganizowana przez nas misja POLAR, zrealizowana w 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2, zaobserwowała 55 rozbłysków, z których pięciu udało się zmierzyć polaryzację – uzupełnia prof. Pollo. Liczymy na to, że POLAR-2 dostarczy znacznie więcej znacznie bardziej szczegółowych informacji.
      Naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych uczestniczyli w pierwszym eksperymencie POLAR m.in. przygotowując elektronikę, prototypując plastikowe detektory scyntylacyjne i analizując zebrane dane. Dla eksperymentu POLAR-2 chcemy zaprojektować i zbudować układy elektroniczne odbierające dane bezpośrednio z detektora – opowiada mgr inż. Dominik Rybka z Zakładu Elektroniki i Systemów detekcyjnych NCBJ, współtwórca elektroniki wykorzystanej w 2016 r. Nasze układy wyposażymy w odpowiednie, stworzone u nas oprogramowanie. Zamierzamy także zaprojektować, zbudować i oprogramować elektronikę, która przygotuje do wysłania na ziemię sygnały odebrane wcześniej z detektorów. Kolejnym naszym zadaniem ma być budowa specjalnego zasilacza niskiego napięcia, zasilającego cały instrument.
      Polscy naukowcy będą również brać udział w analizie danych zebranych przez detektor.
      Poza NCBJ w skład konsorcjum POLAR-2 wchodzą: Uniwersytet Genewski, Max Planck Institute For Extraterrestial Physics oraz Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk.
      Naukowcy spodziewają się, że nowa aparatura zacznie zbierać dane w 2024 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyczne Ścieżki to konkurs uczniowski, który co roku, począwszy od 2005 r., organizowany jest wspólnie przez Narodowe Centrum Badań Jądrowych w Świerku i Instytut Fizyki Polskiej Akademii Nauk w Warszawie. Konkurs rozpoczyna się w maju, a kończy Seminarium Finałowym w marcu lub kwietniu. Jest on przeznaczony dla tych wszystkich, którzy znajdują w sobie pasję badawczą i poznawczą, którzy mają pełne pomysłów głowy, dla humanistów, którzy patrzą na świat szeroko otwartymi oczami.
      Konkurs rozgrywa się w trzech kategoriach: pokaz zjawiska fizycznego, praca naukowa oraz esej.
      Pokaz zjawiska fizycznego – nie trzeba znać wszystkich subtelności (w tym matematycznych) fizyki, aby móc przygotować pasjonujący pokaz jakiegoś zjawiska – ważny jest przede wszystkim dobry pomysł, który zaciekawi widzów;
      Esej – skierowany do tych, którzy potrafią zauważyć, jak dalece fizyka kształtuje naszą cywilizację – w tym celu wystarczy dysponować tzw. lekkim piórem i nawet podstawową wiedzą fizyczną;
      Prace naukowe – kategoria wymagająca, ale nie oznacza to, że jedynie osoby z umysłem Einsteina są w stanie podołać temu zadaniu: trzeba się tylko odważyć i opanować reguły rządzące pracą naukową.
      Konkurs jest dwuetapowy:
      Uczestnik przesyła swoją pracę lub jej opis pocztą elektroniczną na adres organizatora. Nadesłane prace oceniają pracownicy naukowi i na podstawie ich ocen Jury typuje finalistów. Są oni zapraszani na seminarium finałowe gdzie prezentują swoje propozycje przed Jury i publicznością oraz odpowiadają na pytania Jury związane z ich pracą. Podczas seminarium finałowego wyłonieni są laureaci konkursu, którzy otrzymują nagrody, a wśród nich możliwość uzyskania indeksów wydziałów fizyki największych uczelni w Polsce, oraz staże w jednostkach naukowych zarówno polskich jak i zagranicznych.
      W tym roku odbywa się już XIV edycja konkursu. Po raz pierwszy w 14-letniej historii konkursu, Seminarium Finałowe odbywa się w Parku Naukowo-Technologicznym w Narodowym Centrum Badań Jądrowych. Uczestnicy i Opiekunowie pochodzący z całej Polski zostali zaproszeni do Instytutu, gdzie oprócz zaprezentowania swojej pracy przed Jury, mają możliwość zwiedzenia jedynego w Polsce reaktora jądrowego Maria.
      Konkurs objęty jest patronatem Ministra Edukacji Narodowej i Ministerstwa Nauki i Szkolnictwa Wyższego. Partnerzy i sponsorzy, to: Województwo Mazowieckie, Miasto Otwock, Powiat Otwocki, Centrum Nauki Kopernik i System Antyplagiatowy Plagiat.pl.
      Główne nagrody w konkursie to nagrody pieniężne sponsorowane przez Województwo Mazowieckie, nagrody rzeczowe ufundowało zaś Miasto Otwock i Powiat Otwocki.
      Pokaz zjawiska fizycznego:
      1. Autonomiczny dom - Bartosz Bartoszewski, Michał Ściubisz, II kl. LO
      Budując nasz projekt, myśleliśmy przede wszystkim o naszym mieście uzdrowiskowym Busko Zdrój. Chcemy poprawić jakość tamtejszego powietrza. W tym celu zbudowaliśmy makietę samowystarczalnego domu. Zastosowaliśmy w nim systemy, dzięki którym wytwarza śladowe ilości szkodliwych substancji i jest tańszy w eksploatacji niż "standardowy" dom. Zbudowaliśmy od postaw m.in. biologiczną oczyszczalnię ścieków, wiatrak o osi pionowej, przyszły sposób transportu lotniczego, uprawę roślin i hodowlę zwierząt. Zastosowaliśmy również panele fotowoltaiczne.
      2. Tornada i wiry - Bartosz Pater, Urszula Stokowska, Marta Błaż, IV–V kl. SP.
      Prezentujemy przykłady wirowania różnych przedmiotów i substancji. Wir w butelkach z wodą, tonikiem, brokatem. Ogniste tornado w metalowym koszu. Pokazujemy, że wir można uzyskać nie tylko podczas obracania, ale również, gdy mamy wąskie szczeliny i różne temperatury w powietrzu. Uzyskujemy wówczas ogniste tornado w szklanej przeciętej rurze i dymne tornado z podpałki grillowej. Pokazujemy żartobliwe optyczne tornado w kalejdoskopie z pleksi. Do uzyskania wiru gazowego użyliśmy suchego lodu oraz doniczki i folii spożywczej. Tworzymy wiry z pary wodnej, gwałtownie uderzając gaz. Tornado finansowe to również z naszej strony żart, ale wynikający z eksperymentowania i wyjaśniania DLACZEGO? Dlaczego nie wszystkie monety magnesują się? Dlaczego magnes rozrywa balon z monetami? Na koniec BANALNY wir w słoiku z wodą i koralikami.
      3. Astroblaster - Mateusz Machaj, Kacper Górski, II kl. LO
      Często zdarza się, że gdy piłka mniejsza spada wraz z umiejscowioną pod nią większą na ziemię, odbija się ona znacznie wyżej niż to spodziewane. Postaramy się wprowadzić was w szczegóły takiego zjawiska oraz znaleźć układ zapewniający najbardziej widowiskowe odbicie. Projekt ASTROBLASTER ma na celu wyjaśnienie, czym jest przekazanie energii i pędu, za pomocą narzędzi matematycznych oraz fizycznej analizy doświadczalnej.
      4. W krainie suchego lodu - Przemysław Sikorski, Aleksandra Guguła, III kl. GIM.
      Seria ciekawych doświadczeń fizycznych z wykorzystaniem suchego lodu jako tematu przewodniego.
      5. Źródła prądu elektrycznego - Denis Janiak, Mariusz Majzner, III kl. LO
      Pokazujemy różne przykłady źródeł prądu elektrycznego. Ogniwa chemiczne: ogniwo galwaniczne (metalowe płytki w elektrolicie), żartobliwy kartoflany piesek z diodową główką, ogniwo cytrynowe. Ogniwo indukcyjne: prąd w zwojnicach uzyskujemy podczas spadania silnych magnesów neodymowych. Fotoogniwo otrzymaliśmy z płytek miedzianych, z których jedna była wytrawiana w ogniu palnika. Umieszczone w elektrolicie i oświetlane światłem UV są źródłem prądu w zamkniętym obwodzie. Termoogniwo umieszczamy w dwóch ośrodkach różniących się znacznie temperaturami. Otrzymujemy w obwodzie prąd dzięki termicznemu przesunięciu elektronów.
      Praca naukowa:
      1. Badanie natężenia światła po przejściu przez trzy filtry polaryzacyjne i jego zależność od prawa Malusa - Michał Kogut, Milena Piasecka, III kl. GIM.
      Światło widzialne jest falą elektromagnetyczną i jak wszystkie fale elektromagnetyczne, składa się z połączonego oscylującego pola elektrycznego i magnetycznego, które są zawsze prostopadłe względem siebie. Polaryzacja światła polega na ukierunkowaniu oscylacji fali elektrycznej względem kierunku jej ruchu. Jeżeli światło pada na polaryzator liniowy, ma zastosowanie prawo Malusa. Nasz eksperyment miał na celu sprawdzić natężenie światła po przejściu przez trzy filtry polaryzacyjne i jego zależność od prawa Malusa. Aby sprawdzić tę zależność, najpierw dokonywaliśmy pomiarów wartości natężenia światła przechodzącego przez 2 i 3 filtry, później porównywaliśmy te wartości z wynikami obliczeń. Nasze badania pokazały, że prawo Malusa jest spełnione dla 3 filtrów.
      2. Zastosowanie dekompozycji LU do oscylatora anharmonicznego – Mikołaj Myszkowski, II kl. LO
      Oscylator anharmoniczny ma szerokie zastosowanie w wielu dziedzinach fizyki teoretycznej. W pracy przedstawiono ogólny przypadek nieliniowego oscylatora anharmonicznego przy użyciu reprezentacji macierzowej. Zapis Hamiltonianu za pomocą operatorów kreacji i anihilacji, a następnie rozkład metodą LU pozwala na otrzymanie nowych wyników, takich jak równanie poziomów energetycznych, które jest nieskończone, a przez to nierozwiązywalne. Przedstawiono także nową metodę przybliżoną, a otrzymane wartości są porównane do metod perturbacyjnych.
      3. Czas zderzenia sprężystego - Wojciech Kulpa, Konrad Karaba, II kl. LO
      Celem pracy jest pomiar czasu zderzenia sprężystego dwóch metalowych kul. Doświadczenie to wykonaliśmy, stosując dwie niezależne metody: analogową i cyfrową. W metodzie analogowej zastosowaliśmy kondensator, który zostanie naładowany, a następnie podczas zderzenia częściowo rozładowany. Teoria obwodów elektrycznych pozwoli nam obliczyć czas rozładowywania się kondensatora. W metodzie cyfrowej zastosujemy to, co komputer "lubi najbardziej" – liczenie. Co zatem będzie liczył? Liczył będzie impulsy taktowane przez wewnętrzny zegar o częstotliwości 1MH. Rozpoczęcie i zakończenie zliczania uwarunkowane będzie sygnałem zewnętrznym, czyli zetknięciem się kul. Zetknięte kule zmienią poziom logicznego "1" na "0" na jednym z pinów portu wejściowego mikrokontrolera. Wynik przekazany będzie na ekran komputera.
      4. Bezpieczny lot – innowacyjna modyfikacja skrzydła - Bartosz Piechocki, III kl. LO
      W dzisiejszych czasach przemysł lotniczy szybko się rozwija, a konstruktorzy samolotów muszą wymyślać nowe rozwiązania problemów, aby ich samolot był wydajniejszy i bezpieczniejszy. Jako pilot zauważyłem, że w małym lotnictwie problemem jest szczelina, która tworzy się pomiędzy skrzydłem a sterami podczas ich wychylania. Chciałem sprawdzić, jak mój pomysł na modyfikację skrzydła w postaci "załatania" szczeliny elastycznym materiałem ulepszy jego osiągi, więc wymyśliłem 2 eksperymenty. W pierwszym sprawdziłem, czy moja modyfikacja polepsza przepływ powietrza oraz siłę nośną. W drugim eksperymencie sam wykonałem profesjonalny tunel aerodynamiczny, który umożliwił mi dokładne badania nad siłą nośną, oporem i przepływem powietrza. Wyniki pokazały polepszenie się charakterystyk i osiągów skrzydła.
      5. Microwave Resonant Cavity Thruster, silnik mikrofalowy - Jakub Jędrzejewski, IV kl. Tech.
      Na początku XIX wieku angielski inżynier Roger Shawyer opublikował informację na temat swojego silnika, który wykorzystując fale elektromagnetyczne z zakresu mikrofal ma wytwarzać ciąg. Problemem okazało się wyjaśnienie teoretyczne powstawania siły, gdyż nikt nie jest w stanie do dnia dzisiejszego jednoznacznie wyjaśnić zasady działania silnika. Postawiłem sobie pytania: Czy on rzeczywiście działa? Jak to sprawdzić? W mediach pojawiły się informację, że silnik EmDrive łamie trzecią zasadę dynamiki Newtona. Czy aby na pewno? W celu sprawdzenia odpowiedzi na postawione pytania wykonałem własny model silnika wraz z systemem zasilania i kontroli. Ponieważ siły, które mogłyby być wygenerowane przez silnik, są bardzo małe, musiałem zaprojektować również specjalne stanowisko pomiarowe, które jest w stanie mierzyć siły z dokładnością przynajmniej rzędu μN, a nawet większą.
      6. Fuzor – reaktor syntezy termojądrowej - Filip Tomczyk, Jakub Jędrzejewski, III i IV kl. Tech.
      Teoria opisująca działanie fuzora została opracowana przez amerykańskiego wynalazcę Phila Farnswortha we wczesnych latach 30. ubiegłego wieku. Wspomniane urządzenie stanowi rozwiązanie największych problemów stających na drodze naukowców, pojawiających się przy próbach wywołania i utrzymania zjawiska fuzji termojądrowej innymi metodami. Mimo że jest to urządzenie powstałe ponad 85 lat temu, sposób jego działania w połączeniu z obecnie dostępną technologią powinien pozwolić dogłębnie oraz bezpiecznie badać zjawisko fuzji. Nieokiełznana dotąd fuzja może być w przyszłości dla nas bezpiecznym oraz odnawialnym źródłem energii, posiadającym sporą przewagę nad energią atomową. W przeciwieństwie do niej nie daje możliwości wystąpienia jakiejkolwiek awarii, a także nie generuje odpadów radioaktywnych o długim okresie połowicznego rozpadu. Dodatkowo wyłączenie reaktora jest niemal natychmiastowe. Energia powstała przy łączeniu lekkich jąder, czyli syntezie termojądrowej, jest dużo większa niż energia uwolniona przy rozszczepianiu ciężkich jąder uranu. Cecha negatywna syntezy to duża ilość włożonej pierwotnej energii, potrzebnej do zainicjowania reakcji. Jest ona jednak nieistotna, biorąc pod uwagę pozostałe zalety fuzji. Jednakże, aby móc marzyć o takiej przyszłości, trzeba zacząć kreować ją już dziś. Jest to nasz główny cel przyświecający tworzeniu fuzora. Założeniem naszego projektu jest budowa reaktora termojądrowego nazywanego fuzorem. Jest to akcelerator cząstek zdolny do przeprowadzenia fuzji deuteru. Głównym celem projektu było zdobycie i opublikowanie jak największych ilości danych powiązanych ze wspomnianym zjawiskiem, które mogą zostać wykorzystane w przyszłych badaniach. Podczas badań chcemy sprawdzać wpływ wielu czynników na zjawisko fuzji, m.in. wpływ materiału siatki klatki elektrostatycznej na przebieg fuzji oraz uzyskany bilans energetyczny. Projekt urządzenia jest oparty o fuzor Farnswortha–Hirscha, jednakże jest to praca całkowicie autorska, ponadto wprowadzimy wiele usprawnień.
      7. Panta Rhei..... Czasem w górę - Dominik Filipczak, I kl. LO
      Praca obejmuje zagadnienia związanie z podstawami reologii i zjawiskami, które zachodzą w płynach nienewtonowskich. Jej głównym tematem jest efekt Weissenberga. Zbadano czynniki wpływające na wynik efektu dla dwóch cieczy nienewtonowskich. Czynnikami tymi były: zmiana stężenia cieczy oraz szybkość obracania pręta, na który wznosi się ciecz.
      8. Ile waży Ziemia - Julia Czachorowska, Alicja Grzybowska, Małgorzata Rękawiecka, III kl. GIM.
      Zadaniem zespołu było jak najdokładniejsze wyznaczenie masy Ziemi na podstawie własnych pomiarów, bez użycia nowoczesnych rozwiązań i urządzeń. Inspirację zaczerpnęłyśmy z badań przeprowadzonych przez Eratostenesa. Postanowiłyśmy iść tym śladem i obliczyć masę Ziemi ze wzoru, do którego wyznaczyłyśmy w jak najprostszy sposób wszystkie potrzebne wielkości (za wyjątkiem stałej grawitacji). Podczas pracy tworzyłyśmy proste przyrządy służące do mierzenia kąta padania promieni słonecznych. Na podstawie jednoczesnych pomiarów w centrum i na północy Polski, wyliczyłyśmy promień Ziemi. Wyznaczyłyśmy też przyspieszenie ziemskie przez mierzenie czasu spadania upuszczanych ołowianych kulek. Otrzymana przez nas wartość masy Ziemi różni się o mniej niż 10% od wartości tablicowej.
      Esej:
      1. Kosmiczny mechanizm – Agata Ślusarska, III kl. GIM.
      Ludzie w dzisiejszych czasach różnie spoglądają na świat i naukę. Niektórzy zachwycają się wszystkimi wspaniałościami, które nas otaczają, inni nie widzą niczego poza czubkiem własnego nosa, wykorzystują daną im władze do okrutnych celów lub są całkowicie obojętni na piękno Wszechświata.
      2. Rozmyślania podczas sprzątania biurka - Maria Krzyżowska, I kl. LO
      Dokąd zmierza nasz świat? Jak będzie wyglądał jego koniec? Pytania te nurtowały filozofów od wieków. Myślę, że każdy z nas zadał je sobie chociaż raz. Z odpowiedzią przychodzi nam druga zasada termodynamiki. W mojej pracy opowiem, czym jest entropia, dlaczego nazywamy ją strzałką czasu oraz jaki związek z tym wszystkim ma zabałaganione biurko.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Detektor POLAR został uruchomiony we wrześniu 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2. Naukowcy opublikowali właśnie pierwsze wyniki naukowe w czasopiśmie Nature Astronomy. POLAR jest efektem współpracy pomiędzy Szwajcarią (Uniwersytet w Genewie i Paul Scherrer Institut), Polską (Narodowe Centrum Badań Jądrowych) i Chinami.
      Błyski gamma (GRB) są obserwowane jako bardzo krótkotrwałe sygnały rentgenowskie pochodzące ze źródeł, które znajdują się w kosmologicznych odległościach od Ziemi. Te źródła emitują w ciągu kilku sekund więcej energii niż Słońce w czasie całego swojego życia i nie wiadomo, jak to robią. Kierunki błysków nie powtarzają się, więc prawdopodobnie emisji towarzyszy jakaś nieodwracalna katastrofa kosmiczna. Obecnie GRB obserwowane są średnio ok. raz dziennie przez kilka detektorów satelitarnych. Od lat 60/70 XX w. mierzone są kierunki błysków, intensywności i energie fotonów gamma oraz ich zmienność w czasie. POLAR otworzył nowe "okno": pomiar polaryzacji tego promieniowania.
      POLAR to największy detektor przeznaczony do pomiaru polaryzacji kwantów gamma z GRB, wystarczająco duży i precyzyjny, aby wykonać pomiary wielu błysków i wiarygodnie określić polaryzację. POLAR zmierzył 55 GRB. Do określenia polaryzacji potrzeba tysięcy fotonów z GRB. Z opublikowanych właśnie pierwszych danych na temat polaryzacji pięciu błysków gamma wynika, że wyznaczony stopień polaryzacji fotonów w błyskach we wszystkich przypadkach jest bardzo mały. W przypadku najjaśniejszego błysku było możliwe zmierzenie polaryzacji oddzielnie w kolejnych chwilach czasu. Okazało się, że w każdym momencie pomiaru została stwierdzona wysoka polaryzacja, ale kierunek polaryzacji obracał się w czasie.
      Obserwowana polaryzacja wymaga kierunkowego uporządkowania źródła emisji, a szybka zmienność kierunku polaryzacji sugeruje jakąś nową, nieznaną i niezbadaną własność emitera. Zjawisko to może być bardzo interesujące. Jeśli chcemy lepiej zrozumieć proces emisji GRB, musimy zbudować o wiele większy detektor niż POLAR. Obecnie naukowcy przygotowują bardziej wydajny detektor POLAR-2 i mają nadzieję uruchomić go w 2022 roku na następnej chińskiej stacji kosmicznej.
      Współtwórcami kluczowych elementów eksperymentu POLAR byli polscy naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych*. Bezpośrednio w prace zaangażowanych było ok. 10 osób, w tym z łódzkiej Pracowni Fizyki Promieniowania Kosmicznego NCBJ i z Zakładu Elektroniki i Systemów Detekcyjnych NCBJ w Świerku. Jednym z osiągnięć współpracy było zaprojektowanie i wybudowanie centralnego układu dokonującego selekcji przypadków (trygera) i oprogramowanie go. Z uwagi na ograniczoną możliwość komunikacji urządzenia satelitarnego z Ziemią przesyłane dane muszą podlegać selekcji jeszcze w kosmosie. M.in. odrzucane są zdarzenia wywołane przez jonizujące cząstki promieniowania kosmicznego. Najciekawsze są zdarzenia, podczas których w detektorze nastąpiło co najmniej podwójne rozproszenie fotonu gamma w bardzo krótkim odstępie czasu. Takie przypadki wykorzystuje się od określenia polaryzacji fotonów gamma z rozbłysku.
      W pracowni NCBJ w Łodzi powstał prototyp zasilacza wysokiego napięcia dla 25 fotopowielaczy POLARa. Jest to projekt zmarłego w 2016 r. znakomitego elektronika p. Jacka Karczmarczyka. Oprócz prac technicznych Polacy uczestniczyli także we wszystkich fazach testowania detektora podczas badań kwalifikacyjnych oraz funkcjonalnych. Wszystkie elementy detektora muszą wytrzymać ekstremalne warunki: próżnię, gwałtowne wstrząsy, duże przeciążenia, wysoką i niską temperaturę, a także wysokie dawki promieniowania.
      W Świerku prototypowano także plastikowe detektory scyntylacyjne, służące do detekcji promieniowania gamma. Matryca 1600 takich scyntylatorów jest sercem detektora POLAR.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Projekt PolFEL polskiego lasera na swobodnych elektronach przygotowany przez konsorcjum ośmiu jednostek naukowych uzyska finansowanie z Programu Operacyjnego Inteligentny Rozwój. Decyzja o przeznaczeniu na ten cel kwoty ponad 118 mln. zł dotarła do NCBJ, gdzie powstać ma nowe urządzenie badawcze. Polski projekt będzie wspierany naukowo i technicznie m.in. dzięki współpracy NCBJ z twórcami najpotężniejszego tego typu urządzenia na świecie pracującego od roku w Hamburgu.
      Lasery na swobodnych elektronach, których już kilkadziesiąt powstało na świecie, pozwalają badać z niedostępną innymi metodami precyzją materiały, molekuły chemiczne, cząsteczki biologiczne i dynamikę procesów, w których one uczestniczą. Wyniki badań prowadzonych przy użyciu tych urządzeń mogą mieć rewolucyjne znaczenie dla medycyny, chemii czy elektroniki.
      Mamy ambitny plan by zbudować PolFEL w ciągu najbliższych czterech lat - wyjaśnia dr Paweł Krawczyk (NCBJ), który kieruje projektem. W konstrukcji naszego lasera na swobodnych elektronach można wydzielić cztery zasadnicze elementy. Pierwszy z nich to źródło elektronów wyposażone w nadprzewodzącą fotokatodę. Kolejne, to cztery nadprzewodzące kriomoduły przyspieszające elektrony do energii osiągającej maksymalnie 180 MeV. Na drodze wiązek rozpędzonych elektronów zostaną umieszczone dwa undulatory, w których elektrony będą poruszać się slalomem w niejednorodnym, specjalnie ukształtowanym polu magnetycznym. W czasie wymuszonego ruchu oscylacyjnego nastąpi akcja laserowa i elektrony będą emitować fotony układające się w niezwykle krótkie, lecz intensywne impulsy spójnego promieniowania elektromagnetycznego, czyli światła. Na końcu układu znajdą się trzy stanowiska eksperymentalne, do których będą wyprowadzone wiązki fotonów i jedno wykorzystujące wiązkę elektronów.
      PolFEL będzie mógł wytwarzać światło o długości fali powyżej 100 nanometrów, a więc obejmującej część zakresu ultrafioletu. Badacze będą mieli do dyspozycji także promieniowanie o większej długości fali, w tym promieniowanie terahercowe i podczerwone. Planujemy, by PolFEL działał nie tylko w trybie impulsowym – tak jak wszystkie dotychczas istniejące lasery na swobodnych elektronach – ale również w trybie fali ciągłej, w którym pulsy promieniowania generowane są ze stałą częstością” – dodaje dr Krawczyk. „Pozwoli to na badanie niektórych rzadkich procesów, umykających dotychczas stosowanym metodom.
      ,PolFEL powstanie w przebudowanej, historycznej hali pierwszego zbudowanego w Świerku akceleratora protonów Andrzej. Obok niej wzniesiona zostanie nowa hala mieszcząca stanowiska badawcze. Do hali Andrzeja dobudowane zostaną pomieszczenia nowego laboratorium fotokatod nadprzewodzących.
      Realizacja przedsięwzięcia będzie możliwa dzięki ogromnemu doświadczeniu zdobytemu przez polskich naukowców i inżynierów podczas budowy lasera XFEL w Hamburgu. NCBJ jest współudziałowcem międzynarodowej spółki będącej jego właścicielem, a w budowie lasera obok NCBJ uczestniczyły także inne polskie instytucje w tym IFJ PAN i Wrocławski Park Technologiczny.
      Owocne partnerstwo NCBJ z laboratorium w Niemczech jest nadal podtrzymywane. 25 czerwca został podpisany aneks do umowy o współpracy pomiędzy NCBJ a European XFEL GmbH. Dotychczasowa umowa przewidywała współpracę przy przetwarzaniu danych zbieranych przez eksperymenty prowadzone w Hamburgu. W aneksie rozszerzono pole współpracy w dziedzinie przetwarzania danych oraz dodano wspólne prace nad technologiami wykorzystywanymi w laserach na swobodnych elektronach, a także zaplanowano udział NCBJ w przygotowywaniu koncepcji wykorzystania dwóch z pięciu tuneli wyprowadzających wiązki cząstek z akceleratora XFEL.
      Konsorcjum XFEL jest zainteresowane między innymi prowadzonymi u nas od kilku lat pracami nad ołowianymi fotokatodami nadprzewodzącymi - wyjaśnia dyrektor NCBJ, prof. Krzysztof Kurek. Opracowywane fotokatody mają umożliwić pracę laserów na swobodnych elektronach w trybie fali ciągłej lub w trybie długich impulsów. Takie katody chcemy zastosować także w laserze, który zostanie zbudowany w Świerku. Naukowcy z NCBJ zgłaszają również koncepcję wykorzystania nowatorskiej metody uzyskiwania monoenergetycznych wiązek fotonów gamma w jednym z kanałów XFELa. Fotony takie powstawałyby w wyniku zderzenia elektronów pochodzących z akceleratora lasera z wiązką fotonów emitowaną przez tradycyjny laser. Ta koncepcja ma być realizowana również w projekcie PolFEL.
      Laboratorium PolFEL, które powstanie w ośrodku jądrowym NCBJ w Świerku, będą współtworzyć gospodarze oraz specjaliści z Wojskowej Akademii Technicznej, Politechniki Warszawskiej, Politechniki Łódzkiej, Politechniki Wrocławskiej, Uniwersytetu Zielonogórskiego, Uniwersytetu w Białymstoku i Uniwersytetu Jagiellońskiego. Polskich naukowców będą wspierać partnerzy NCBJ - m.in. laboratoria DESY, STFC Lab Daresbury, a także European XFEL GmbH i firmy RI Research Instruments GmbH i Kubara Lamina S.A. Większość środków będzie pochodziła z Programu Operacyjnego Inteligentny Rozwój ustanowionego przez Unię Europejską. Jednostką wdrażającą Program pośredniczącą w procesie finansowania przedsięwzięcia jest Ośrodek Przetwarzania Informacji (OPI) - Państwowy Instytut Badawczy.
      Akcelerator lasera PolFEL będzie działał w trybach fali ciągłej (cw) i długiego impulsu (lp). Elektrony będą rozpędzane przez cztery kriomoduły, mieszczące w 8 wnękach typu TESLA SRF. Wiązki o energii 120 MeV i 160 MeV w trybie cw i lp zostaną skierowane do undulatora VUV, podczas gdy niższe wiązki energii będą napędzać undulator THz. Wygenerowane promieniowanie w zakresie od 0,3 mm do 150 nm dla pierwszej harmonicznej (50 nm dla trzeciej harmonicznej) zostanie dostarczone do eksperymentów przeprowadzanych w dedykowanej sali eksperymentalnej. Oczekiwana energia impulsu będzie na poziomie 100 μJ dla VUV i dziesiątek mikrodżuli dla promieniowania THz. Maksymalna częstotliwość błysków fotonowych w wiązce wyniesie 100 kHz. Wiązka elektronów po przejściu przez undulator VUV będzie wtórnie wykorzystywana do generowania neutronów lub będzie używana do rozpraszania wstecznego Comptona. Część czasu pracy urządzenia zostanie poświęcona badaniom nad rozwojem technologii FEL i nowym komponentom akceleratora we współpracy ze STFC Daresbury, E-XFEL i DESY.Budowa rozpocznie się w styczniu 2019 r. i powinna zakończyć się w 2022 r.

      « powrót do artykułu
×
×
  • Create New...