Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Większej dziury nie znajdziecie

Recommended Posts

Astronomowie z fińskiego Tuorla Observatory odkryli najcięższą czarną dziurę znanego nam Wszechświata. Potwór ma masę osiemnastu miliardów Słońc, czyli małej galaktyki. To jeszcze nie koniec niezwykłych cech obiektu. Wokół nowego rekordzisty (poprzedni był aż sześciokrotnie lżejszy) krąży bowiem kolejna czarna dziura "zaledwie" 100 milionów razy cięższa od naszej gwiazdy dziennej. Czas obiegu satelity po orbicie wynosi 12 lat. W czasie swej wędrówki dwukrotnie przecina on dysk akrecyjny większej dziury, wywołując nagłe rozbłyski promieniowania. Opisywany gigant znajduje się w odległości 3,5 miliarda lat świetlnych od nas i stanowi centralny element kwazara noszącego oznaczenie OJ287. Zbadanie jego masy było możliwe właśnie dzięki odkryciu wspomnianego satelity. Ponadto układ pozwolił na sprawdzenie poprawności ogólnej teorii względności Einsteina. Jednym z jej przewidywań jest precesja peryhelium mniejszego obiektu. Okazało się, że w wypadku kwazara potężne pole grawitacyjne oraz kolizje z dyskiem akrecyjnym przesuwają punkt największego zbliżenia między osobliwościami aż o 39 stopni na każde okrążenie orbity. Innym zmierzonym efektem jest zacieśnianie orbity mniejszego obiektu, będące wynikiem wypromieniowania energii w postaci fal grawitacyjnych. Gdyby nie owo promieniowanie, ostatni zarejestrowany rozbłysk wydarzyłby się o 20 dni później, niż go zaobserwowano w rzeczywistości. Oczywiście, zjawisko to doprowadzi w końcu do "połknięcia" mniejszej dziury przez większą. Nastąpi to za około 10 tysięcy lat. W obecnej chwili rekordowa masa czarnej dziury jest jedynie hipotezą wysnutą na podstawie stosunkowo mało precyzyjnych pomiarów. Jednak jeśli kolejne rozbłyski OJ287 będą następowały w czasie przewidzianym przez model matematyczny, otrzymamy coraz mocniejsze dowody potwierdzające niezwykłość tego kwazara.

Share this post


Link to post
Share on other sites
Oczywiście, zjawisko to doprowadzi w końcu do "połknięcia" mniejszej dziury przez większą. Nastąpi to za około 10 tysięcy lat.

To już chyba dawno się to zdarzyło, skoro światło leciało te 3.5 mld lat świetlnych to ta mniejsza czarna dziura przestała istnieć te 3.5 mld lat - 10 tysięcy ;D Dobrze myślę? :)

Share this post


Link to post
Share on other sites
Opisywany gigant znajduje się w odległości 3,5 miliarda lat świetlnych od nas

 

Z dużym prawdopodobieństwem tam go już nie ma lub nie istnieje....

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów korzystając z kosmicznego teleskopu eROSITA znajdującego się na pokładzie misji Spektr-RG odkrył powtarzające się co kilka/kilkanaście godzin wybuchy w zakresach promieniowania rentgenowskiego pochodzące z obszarów centralnych w dwóch galaktykach. Wcześniej nie wykazywały one jakiejkolwiek aktywności. Praca właśnie ukazała się w prestiżowym periodyku Nature. Głównym autorem pracy jest Riccardo Acordia - doktorant z Max Planck Institute for Extraterrestrial Physics (MPE). Członkiem zespołu badawczego był również dr Mariusz Gromadzki.
      W centrum prawie każdej galaktyki znajduje się supermasywna czarna dziura. W przypadku galaktyk podobnych do naszej Drogi Mlecznej, masy supermasywnych czarnych dziur zawierają się w przedziale od kilkuset tysięcy do kilku milionów mas Słońca. Dla porównania masa czarnej dziury w Drodze Mlecznej to pięć milionów mas Słońca. Supermasywne czarne dziury nie emitują żadnego światła, a o ich obecności astronomowie wnioskują na podstawie zachowania gwiazd i materii w ich najbliższym sąsiedztwie.
      Są też galaktyki ze znacznie masywniejszymi czarnymi dziurami (ich masy mogą sięgać nawet setek milionów mas Słońca). Otoczone są one  dyskami materii, która w ogromnych ilościach jest przez nie pochłaniana. Wewnętrzne obszary takich dysków są rozgrzane do ogromnej temperatury i emitują olbrzymie ilości promieniowania, często kilkakrotnie większego niż wszystkie gwiazdy w danej galaktyce. Obiekty takie nazywamy kwazarami i oznaczamy je skrótem AGN (ang. active galactic nuclei), czyli aktywne jądra galaktyk. Są to najjaśniejsze obiekty we Wszechświecie.   
      Podczas rutynowego skanowania nieba eROSITA znalazła nietypowe obiekty zlokalizowane w centrach dwóch galaktyk, które niemal w regularnych odstępach czasu, co kilka/kilkanaście godzin, wysyłały ostre impulsy w promieniowaniu rentgenowskim. Emitowana podczas nich energia jest porównywalna z całkowitą energią wypromieniowywaną przez ich macierzyste galaktyki. Było to odkrycie o tyle zaskakujące, że wcześniej podobne zjawisko zostało odkryte w przypadku dwóch kwazarów, a ich natura tłumaczona był procesami fizycznymi występującymi w wewnętrznych obszarach dysków akrecyjnych. Nowo odkryte zjawiska zostały potwierdzone przy użyciu dwóch innych rentgenowskich teleskopów XMM-Newton oraz NICER.
      W tym przypadku galaktyki, z których dochodzą impulsy są spokojne i nie pokazywały wcześniej żadnej zmienności związanej z pochłanianiem materii przez supermasywne czarne dziury. Są to zupełnie normalne galaktyki podobne do naszej Drogi Mlecznej. Przyczyną tych zjawisk nie jest do końca zrozumiała. Z pewnością w tym przypadku można odrzucić wyjaśnienie wymagające obecności dysku akrecyjnego.  Najbardziej prawdopodobną przyczyną tej pseudo-okresowej zmienności jest obecność w pobliżu  supermasywnej czarnej dziury gwiazdy, której orbita jest znacząco wydłużona. W momencie gdy gwiazda znajduje się najbliżej czarnej dziury,  część jej atmosfery jest odrywana przez ogromną grawitację, a następnie pochłaniana. Dalsze obserwacje oraz badania teoretyczne tych obiektów pozwolą potwierdzić bądź odrzucić proponowany scenariusz oraz zrozumieć mechanizmy aktywowania czarnych dziur w typowych galaktykach.
      W opublikowanych badaniach brał udział doktor Mariusz Gromadzki z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego. Zajmował  się on opracowaniem widm optycznych tych obiektów uzyskanych przy pomocy 10 metrowego teleskopu SALT zlokalizowanego w Republice Południowej Afryki. Widma te pozwoliły na wyznaczenie odległości do tych galaktyk oraz oszacowanie energii emitowanej podczas tych zjawisk.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Odkryto najbliższą Ziemi czarną dziurę. Obiektowi nadano nazwę „Jednorożec” nie tylko dlatego, że znajduje się w Gwiazdozbiorze Jednorożca, ale również dlatego, że ta czarna dziura ma wyjątkowe właściwości. Co więcej, Jednorożec ma towarzysza, czerwonego olbrzyma, który zbliża się do końca swojego żywota. Nasze Słońce również stanie się w przyszłości czerwonym olbrzymem.
      Czarna dziura znajduje się w odległości zaledwie 1500 lat świetlnych od Ziemi. Ma też niezwykle małą masę, jest zaledwie 3-krotnie bardziej masywna niż Słońce. Ten system jest tak dziwny, że musieliśmy nazwać go Jednorożcem, mówi doktorant Tharindu Jayasinghe, którego zespól badał Jednorożca.
      Odkrycia dokonano podczas analizy danych z All Sky Automated Survey i Transiting Exopanet Survey Satellite. Jayasinghe i jego koledzy zauważyli coś niezwykłego – czerwonego olbrzyma, który okresowo zmienia jasność, co sugerowało, iż jest przez coś przyciągany i zmienia kształt.
      Uczeni przeprowadzili więc badania i doszli do wniosku, że tym, co wpływa na kształt gwiazdy jest prawdopodobnie czarna dziura o masie zaledwie 3 mas Słońca. Dla porównania, czarna dziura znajdująca się w centrum Drogi Mlecznej ma masę około 4,3 miliona ma Słońca.
      Tak, jak Księżyc deformuje ziemskie oceany, które przybliżają i oddalają się od niego, wywołując pływy, tak czarna dziura przyciąga gwiazdę, powodując, że wzdłuż jednej osi jest ona dłuższa niż wzdłuż drugiej, wyjaśnia Todd Thompson, dziekan Wydziału Astronomii na Ohio State University. Najprostszym wyjaśnieniem jest w tym przypadku istnienie czarnej dziury i jest tutaj najbardziej prawdopodobnym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na nowym zdjęciu czarnej supermasywnej czarnej dziury M87*, wykonanym przez naukowców pracujących przy Event Horizon Telescope (EHT), zobrazowano pola magnetyczne otaczające czarną dziurę. Strukturę magnetyczną zmapowano mierząc polaryzację światła emitowanego przez rozgrzaną materię znajdującą się wokół M87*.
      W 2019 roku EHT wykonał pierwsze w historii zdjęcia cienia czarnej dziury. To region, który najprawdopodobniej rozciąga się od horyzontu zdarzeń na odległość trzykrotnie większą niż średnica czarnej dziury. M87* znajduje się w odległości około 55 milionów lat świetlnych od Ziemi, a na podstawie zdjęć naukowcy wyliczyli, że jej masa wynosi około 6,5 miliarda mas Słońca. Jeszcze wcześniej, bo w 2012 roku ET zobrazował potężny dżet rozciągający się na odległość około 5000 lat świetlnych od M87*.
      Teraz dzięki EHT przeanalizowano polaryzację światła wokół czarnej dziury, co pozwoliło na zobrazowanie otaczających ją pól magnetycznych. To bardzo istotne z punktu widzenia badań nad czarnymi dziurami i zjawiskami obserwowanymi wokół nich.
      Monika Mościbrodzka z holenderskiego Uniwersytetu im. Radbounda mówi, że przeprowadzona przez nią i kolegów badania to kolejny kluczowy fragment układanki, pozwalający lepiej zrozumieć, jak pola magnetyczne zachowują się w pobliżu czarnych dziur i w jaki sposób ich aktywność w tak niewielkim obszarze przestrzeni może napędzać potężne dżety. Jason Dexter z University of Colorado dodaje, że obserwacje wskazują, iż pola magnetyczne na krawędziach czarnej dziury są na tyle potężne, że odpychają od niej gaz, pozwalając mu przezwyciężyć jej oddziaływanie grawitacyjne. Tylko gaz, który prześliźnie się między tymi polami może opaść na horyzont zdarzeń.
      Badania opisano w dwóch artykułach, opublikowanych na łamach The Astrophysical Journal Letters: First M87 Event Horizon Telescope Results. VII. Polarization of the Ring oraz First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki Very Large Telescope astronomom udało się odkryć i zbadać najbardziej odległe źródło emisji radiowej z dżetami. Źródłem tym jest kwazar położony w odległości 13 miliardów lat świetlnych od Ziemi. Odkrycie pozwoli na lepsze zrozumienie wczesnego wszechświata.
      Kwazary to bardzo jasne obiekty znajdujące się w centrach niektórych galaktyk. Są one zasilane przez supermasywne czarne dziury. Promieniowanie kwazara powstaje w dysku akrecyjnym otaczającą czarną dziurę. Gaz i pył opadające na dysk rozgrzewają się, emitując olbrzymie ilości promieniowania.
      Nowo odkryli kwazar, P172+18 [PDF], powstał, istniał, gdy wszechświat miał zaledwie 780 milionów lat. Znamy bardziej odległe kwazary, ale przy żadnym z nich nie zauważono dotychczas dżetów.
      Kwazar zasilany jest przez czarną dziurę o masie około 300 milionów razy większej od masy Słońca. Pochłania ona materię bardzo szybko. To jedna z najszybciej przybierających na masie czarnych dziur, mówi współautorka badań Chiara Mazzucchelli.
      Specjaliści sądzą, że istnieje związek pomiędzy szybkim pochłanianiem materii przez czarną dziurę, a potężnymi dżetami z kwazarów. Niewykluczone, że dżety zaburzają przepływ gazu w pobliżu czarnej dziury powodując, że szybciej opada on na dysk akrecyjny. Badanie kwazarów z dżetami może więc wiele powiedzieć na temat szybkiego pojawienia się supermasywnych czarnych dziur we wczesnym wszechświecie.
      Drugi z autorów badań, Eduardo Bañados z Instytutu Astronomii im. Maxa Plancka mówi, że wkrótce uda się znaleźć więcej podobnych kwazarów, niewykluczone, że jeszcze dalej położonych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stephen Hawking przewidywał, że czarne dziury emitują promieniowanie jak ciało doskonale czarne. Emisja ta, zwana emisją Hawkinga, jest stała w czasie, a jej temperatura jest determinowana przez grawitację. Mimo, że przewidywania Hawkinga liczą sobie 50 lat, dotychczas nie udało się obserwacyjnie potwierdzić temperatury promieniowania. Prawdopodobnie jest ona niezwykle niska, w skali nanokelwinów lub mniej.
      Naukowcy z Wydziału Fizyki Izraelskiego Instytut Technologii Technion stworzyli dźwiękową czarną dziurę, będącą analogiem rzeczywistych czarnych dziur. To system, z którego fale dźwiękowe nie mogą się wydostać.
      W artykule opublikowanym na łamach Nature Physics naukowcy wykazali istnienie stacjonarnego promieniowania Hawkinga z takiej dziury.
      Dziura o średnicy 0,1 mm powstała z 8000 atomów rubidu. Każdy pomiar ją niszczył, zatem naukowcy – chcąc obserwować ewolucję swojej czarnej dziury – musieli ją na nowo utworzyć, zmierzyć i znowu utworzyć. Eksperyment powtórzyli 97 000 razy, co odpowiadało 124 dniom obserwacji i pomiarów. W tym czasie udało im się zarejestrować 6 momentów spontanicznego promieniowania i potwierdzić, że jego temperatura oraz siła były stałe.
      Profesor Jeff Steinhauer, który stał na czele zespołu badawczego, mówi, że emisja z dźwiękowej czarnej dziury składa się z fal dźwiękowych, a nie świetlnych. Atomy rubidu poruszają się szybciej niż prędkość dźwięku, więc dźwięk nie jest w stanie dotrzeć do horyzontu zdarzeń i uciec z dziury. Jednak poza horyzontem zdarzeń atomy poruszają się powoli, więc i dźwięk może się swobodnie przemieszczać.
      Wyobraź sobie, że płyniesz pod prąd. Jeśli prąd porusza się szybciej od ciebie, nie możesz się przesuwać naprzód, jesteś spychany w tył. To właśnie dzieje się w czarnej dziurze, wyjaśnia uczony.
      Hawking uważał, że promieniowanie czarnych dziur jest spontaniczne. Steinhauer i jego zespół potwierdzili to już podczas poprzednich badań. Obecnie chcieli sprawdzić, czy promieniowanie to jest też stałe, czyli czy nie zmienia się w czasie.
      Promieniowania Hawkinga składa się z pary fotonów. Jeden z nich wpada w czarną dziurę, drugi z niej ucieka. Dlatego też Steinhauer i jego koledzy szukali podobnych par fal dźwiękowych. Gdy już je znaleźli, musieli jeszcze określić, czy między nimi istnieje korelacja. W jej poszukiwaniu przeprowadzili wspomniane 97 000 powtórzeń eksperymentu.
      Uzyskane przez Izraelczyków wyniki są zgodne z przewidywaniami Hawkinga. Wszystko wskazuje na to, że promieniowanie jest stacjonarne. Oczywiście odnosi się do dźwiękowej czarnej dziury stworzonej w laboratorium, jednak naukowcy uważają, że dalsze prace teoretyczne pozwolą stwierdzić, iż wyniki te można też odnieść do czarnych dziur.
      Z naszych badań wynikają ważne pytania, gdyż obserwowaliśmy cały cykl życiowy odpowiednika czarnej dziury, zatem widzieliśmy, jak rozpoczynało się promieniowanie Hawkinga. W przyszłości ktoś może porównać uzyskane przez nas wyniki z tym, co mówią teorie na temat procesów zachodzących w czarnych dziurach. Czy rzeczywiście promieniowanie Hawkinga bierze się z niczego.
      W pewnym momencie podczas eksperymentów promieniowania otaczające laboratoryjną czarną dziurę stało się bardzo silne. Doszło do tego, czy czarna dziura utworzyła horyzont wewnętrzny. Jego istnienie jest zgodnie z teorią Einsteina. Horyzont wewnętrzny znajduje się wewnątrz czarnej dziury i oddziela obszar bliższy centrum temu dalszemu. Wewnątrz tego horyzontu grawitacja jest znacznie mniejsza, więc znajdujące się tam obiekty mogą się swobodnie przemieszczać. Nie opadają na centrum czarnej dziury. Nie są jednak w stanie wydostać się z czarnej dziury, gdyż nie mogą przekroczyć wewnętrznego horyzontu w stronę horyzontu zdarzeń.
      Horyzont zdarzeń to zewnętrzna sfera czarnej dziury. Wewnątrz znajduje się jeszcze jedna mała sfera, horyzont wewnętrzny. Jeśli tam trafisz to nadal jesteś uwięziony w czarnej dziurze, jednak nie odczuwasz dziwacznych praw fizyki w niej obowiązujących. Panuje tam bardziej „normalne środowisko”, oddziaływanie grawitacyjne jest tam znacznie słabsze, wyjaśnia Steinhauer.
      Niektórzy fizycy przewidywali, że gdy analog czarnej dziury tworzy wewnętrzny horyzont, rośnie emisja z czarnej dziury. Takie właśnie zjawisko zaobserwował zespół Seinhauera.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...