Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Niesymetryczny Układ Słoneczny
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
NASA poinformowała o opóźnieniu dwóch kolejnych misji załogowych, jakie mają się odbyć w ramach programu Artemis. Artemis II, w ramach której ludzie mają polecieć poza orbitę Księżyca, została przesunięta z września 2025 na kwiecień 2026, a lądowanie człowieka na Księżycu – Artemis III – przesunięto z końca 2026 na połowę 2027. Opóźnienie związane jest z koniecznością dodatkowych prac przy osłonie termicznej kapsuły załogowej Orion.
Decyzję o opóźnieniu podjęto po zapoznaniu się z wnioskami ze śledztwa w sprawie niespodziewanej utraty przez osłonę Oriona części niecałkowicie spalonego materiału w czasie wchodzenia w atmosferę Ziemi podczas bezzałogowej misji Artemis I. Mimo to misja Artemis II zostanie przygotowana z wykorzystaniem osłony już zamocowanej do Oriona. Badania wykazały bowiem, że osłona dobrze zabezpieczy pojazd oraz załogę. NASA zmieni jednak nieco trajektorię lądowania, by zmniejszyć obciążenie osłony. A trzeba przyznać, że musi ona wiele wytrzymać. Jej zadaniem jest uchronienie kapsuły przed temperaturami dochodzącymi do 2700 stopni Celsjusza, jakie pojawiają się w wyniku tarcia o atmosferę. Po wejściu w nią pojazd pędzi z prędkości ponad 40 tysięcy km/h i za pomocą siły tarcia zostaje spowolniony do ponad 500 km/h. Dopiero przy tej prędkości rozwiną się spadochrony i kapsuła łagodnie wyląduje na powierzchni Pacyfiku.
Przez kilka ostatnich miesięcy NASA i niezależny zespół ekspertów szukali przyczyn, dla których podczas misji Artemis I niecałkowicie spalony materiał z osłony uległ zużyciu w inny sposób, niż przewidziany. Przeprowadzono ponad 100 różnych testów, które wykazały, że gazy, powstające wewnątrz materiału osłony w wyniku oddziaływania wysokiej temperatury, nie mogły wystarczająco szybko się ulatniać, co spowodowało popękanie części materiału i jego odpadnięcie. Mimo tego osłona spełniała swoje zadanie. Czujniki wewnątrz kapsuły wykazały, że temperatura pozostała stabilna i komfortowa dla człowieka.
Teraz, na podstawie badań osłony z misji Artemis I, inżynierowie przygotowują osłonę dla misji Artemis III, dbając o to, by gazy mogły z niej równomiernie uchodzić. Zanim jednak dojdzie do misji Artemis III, wystartuje Artemis II, w ramach której ludzie odlecą od Ziemi na największą odległość w historii. Zadaniem tej 10-dniowej misji będzie przetestowanie systemów podtrzymywania życia, sprawdzenie mechanizmów ręcznego sterowania kapsułą oraz zbadanie, w jaki sposób astronauci wchodzą w interakcje z urządzeniami kapsuły.
Dotychczas kapsuła Orion dwukrotnie opuszczała Ziemię. Po raz pierwszy w 2014 roku, gdy na krótko trafiła na orbitę i po raz drugi w roku 2022, gdy w ramach 25-dniowej misji bezzałogowej NASA wysłała ją na orbitę Księżyca.
Przesunięcie misji Artemis III zwiększa też prawdopodobieństwo, że kolejne opóźnienia nie będą konieczne. Podczas misji bowiem wykorzystany zostanie górny człon rakiety Starship firmy SpaceX, który posłuży do lądowania na Księżycu. Starship jest wciąż rozwijana, dotychczas przeprowadzono jedynie 6 jej testów. Decyzja NASA o opóźnieniu misji daje więc przy okazji firmie Elona Muska więcej czasu na dopięcie wszystkiego na ostatni guzik.
Pomimo opóźnienia USA wciąż wyprzedzają Chiny pod względem najbliższej planowej misji załogowej na Księżyc. Państwo Środka chce bowiem wysłać astronautów na Srebrny Glob około 2030 roku. Ten pośpiech ma podłoże nie tylko ambicjonalne. NASA chce być pierwsza po to, by Chiny nie mogły ustalać zasad pracy na Księżycu. Obecny szef NASA twierdzi bowiem, że nie można wykluczyć, iż gdyby pierwsi wylądowali Chińczycy, to mogliby spróbować zakazać lądowania innym w tym samym regionie.
Oba kraje planują lądowanie w pobliżu południowego bieguna Srebrnego Globu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic, dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.
« powrót do artykułu -
przez KopalniaWiedzy.pl
NASA tymczasowo straciła kontakt z Voyagerem 2, drugim najodleglejszym od Ziemi pojazdem kosmicznym wysłanym przez człowieka. Przed dwoma tygodniami, 21 lipca, popełniono błąd podczas wysyłania serii komend do Voyagera, w wyniku czego jego antena odchyliła się o 2 stopnie od kierunku wskazującego na Ziemię. W tej chwili Voyager, który znajduje się w odległości niemal 20 miliardów kilometrów od naszej planety, nie może odbierać poleceń ani przesyłać danych.
W wyniku zmiany położenia anteny Voyager nie ma łączności z Deep Space Network (DSN), zarządzaną przez NASA siecią anten służących do łączności z misjami międzyplanetarnymi. W skład DSN wchodzą trzy ośrodki komunikacyjne, w Barstow w Kalifornii, w pobliżu Madrytu i Canberry. Rozmieszczono je tak, by każda misja w głębokim kosmosie miała łączność z przynajmniej jednym zespołem anten. Ośrodek z Canberry, którego jedna z anten jest odpowiedzialna za komunikację z sondą, będzie próbował skontaktować się z Voyagerem, w nadziei, że uda się nawiązać łączność.
Na szczęście NASA zabezpieczyła się na tego typu przypadki. Kilka razy w roku Voyagery resetują położenie swoich anten tak, by mieć łączność z Ziemią. Najbliższy reset nastąpi 15 października. Jeśli więc wcześniej nie uda się połączyć z Voyagerem, będzie można się z nim skomunikować za 2,5 miesiąca.
Voyager 2 został wystrzelony 20 sierpnia 1977 roku. Odwiedził Jowisza, Saturna, Urana i Neptuna, a w 2018 roku opuścił heliosferę i wszedł w przestrzeń międzygwiezdną, dostarczając intrygujących wyników badań. NASA nie po raz pierwszy nie ma kontaktu z sondą. W 2020 roku agencja nie kontaktowała się z nią przez 8 miesięcy, gdyż remontowana była antena DSS 43 w pobliżu Canberry, której zadaniem jest wymiana informacji z sondą.
Voyagery zasilane są radioizotopowymi generatorami termoelektrycznymi, które zamieniają w prąd elektryczny ciepło generowane przez rozpad plutonu-238. Zapasy plutonu stopniowo się wyczerpują, więc naukowcy wyłączają kolejne zużywające prąd urządzenia. Najprawdopodobniej obie sondy stracą zasilanie w 2025 roku. Do tej pory jednak naukowcy spróbują wycisnąć z nich najwięcej, jak się da.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli nowy system pierścieni w Układzie Słonecznym. Otaczają one planetę karłowatą Quaoar i znajdują się znacznie dalej od jej powierzchni niż typowe systemy pierścieni, co każe jeszcze raz zastanowić się nad teoriami dotyczącymi formowania się tego typu struktur.
Quaoar to duża planetoida, o połowę mniejsza od Plutona, która znajduje się za Neptunem. Została odkryta w 2002 roku. Naukowcy, wykorzystując niezwykle czułą szybką kamerę HiPERCAM zamontowaną na największym na świecie teleskopie optycznym Gran Telescopio Canarias na La Palmie zauważyli, że obiekt ten posiada pierścienie. Są one zbyt małe i ciemne, by było widać je bezpośrednio na zdjęciu. Zaobserwowano je dzięki okultacji, kiedy to światło znajdującej się w tle gwiazdy zostało kilkukrotnie na krótko przesłonięte przez niewidoczne na zdjęciu obiekty.
Dotychczas znaliśmy zaledwie sześć systemów pierścieni w Układzie Słonecznym. Takie struktury istnieją wokół Saturna, Jowisza, Urana, Neptuna oraz dwóch planet karłowatych – Chariklo i Haumei. Wszystkie te systemy znajdują się na tyle blisko swojego ciała macierzystego, że siły pływowe uniemożliwiają akrecję materiału z pierścienia i utworzenie księżyców.
Pierścienie wokół Quaoara są wyjątkowe. Znajdują się bowiem w odległości większej niż siedmiokrotna średnica planetoidy. To zaś dwukrotnie dalej niż tzw. granica Roche'a. Granica ta to – w układzie dwóch ciał o znacznej różnicy mas – promień, po przekroczeniu którego ciało mniej masywne może się rozpaść pod wpływem sił pływowych ciała bardziej masywnego. Na przykład główne pierścienie Saturna znajdują się w odległości 3 promieni planety od jej powierzchni. W przypadku Quaoar mamy odległość 7-krotnie większą niż promień planetoidy, a mimo to pierścienie istnieją i nie dochodzi do akrecji materiału. To wskazuje na konieczność przemyślenia teorii dotyczącej formowania się pierścieni.
Odkrycie nieznanego systemu pierścieni było czymś niespodziewanym. A jeszcze bardziej niespodziewane było znalezienie pierścieni tak daleko od Quaoar, co rzuca wyzwanie naszemu dotychczasowemu rozumieniu formowania się pierścieni, mówi profesor Vik Dhillon z University of Sheffield.
« powrót do artykułu -
przez KopalniaWiedzy.pl
NASA i DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) poinformowały o rozpoczęciu współpracy, której celem jest zbudowanie jądrowego silnika termicznego (NTP) dla pojazdów kosmicznych. Współpraca będzie odbywała się w ramach programu DRACO (Demonstration Rocket for Agile Cislunar Operations), który od jakiegoś czasu prowadzony jest przez DARPA.
Celem projektu jest stworzenie napędu pozwalającego na szybkie manewrowanie, przede wszystkim przyspieszanie i zwalnianie, w przestrzeni kosmicznej. Obecnie dysponujemy pojazdami, które są w stanie dokonywać szybkich manewrów na lądzie, w wodzie i powietrzu. Jednak w przestrzeni kosmicznej brakuje nam takich możliwości. Obecnie używane kosmiczne systemy napędowe – elektryczne i chemiczne – mają spore ograniczenia. W przypadku napędów elektrycznych ograniczeniem jest stosunek siły ciągu do wagi napędu, w przypadku zaś napędów chemicznych ograniczeni jesteśmy wydajnością paliwa. Napęd DRACO NTP ma łączyć zalety obu wykorzystywanych obecnie napędów. Ma posiadać wysoki stosunek ciągu do wagi charakterystyczny dla napędów chemicznych oraz być wydajnym tak,jak napędy elektryczne. Dzięki temu w przestrzeni pomiędzy Ziemią a Księżycem DRACO ma być zdolny do szybkich manewrów.
Administrator NASA Bill Nelson powiedział, że silnik może powstać już w 2027 roku. Ma on umożliwić szybsze podróżowanie w przestrzeni kosmicznej, co ma olbrzymie znacznie dla bezpieczeństwa astronautów. Skrócenie czasu lotu np. na Marsa oznacza, że misja załogowa mogłaby zabrać ze sobą mniej zapasów, ponadto im krótsza podróż, tym mniejsze ryzyko, że w jej trakcie dojdzie do awarii. Jądrowy silnik termiczny może być nawet 4-krotnie bardziej wydajny niż silnik chemiczny, a to oznacza, że napędzany nim pojazd będzie mógł zabrać cięższy ładunek i zapewnić więcej energii dla instrumentów naukowych. W silniku takim reaktor jądrowy ma być wykorzystywany do generowania ekstremalnie wysokich temperatur. Następnie ciepło z reaktora trafiałoby do ciekłego paliwa, które – gwałtownie rozszerzając się i uchodząc z duża prędkością przez dysze – będzie napędzało pojazd.
To nie pierwsza amerykańska próba opracowania jądrowego silnika termicznego. Na początku lat 60. ubiegłego wieku rozpoczęto projekt NERVA (Nuclear Engine for Rocket Vehicle Application). Projekt zaowocował powstaniem pomyślnie przetestowanego silnika. Jednak ze względu na duże koszty, prace nad silnikiem zakończono po 17 latach badań i wydaniu około 1,4 miliarda USD.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.