Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Znieczuleni pacjenci mogą słyszeć mowę
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Złożona ludzka mowa mogła wyewoluować dzięki życiu na drzewach, uważa doktor Adriano Lameira z University of Warwick. Specjalizuje się on w badaniu początków języka i jest autorem pierwszej analizy ewolucji spółgłosek. Wynika z niej, wbrew oczekiwaniom, że nasi przodkowie mogli prowadzić bardziej nadrzewny sposób życia, niż nam się wydaje.
W ludzkich językach spotykamy pokaźną liczbę spółgłosek. Od 6 w języku rotokas po 84 w wymarłym ubychijskim. Spółgłoski to dźwięki języka mówionego, które powstają w wyniku częściowego lub całkowitego zablokowania przepływu powietrza przez aparat mowy. Zdecydowana większość naczelnych niemal nie używa dźwięków przypominających spółgłoski. Ich zawołania składają się z dźwięków przypominających samogłoski.
Doktor Lameira, chcąc poznać początki spółgłosek, przejrzał dostępną literaturę i porównał wzorce dźwięków wydawanych przez człowiekowate. Do tej rodziny, obok ludzi – którymi Lameira się nie zajmował – należą orangutany, szympansy, bonobo i goryle. Okazało się, że – w przeciwieństwie do innych naczelnych – małpy te używają dźwięków przypominających spółgłoski, ale ich wykorzystanie jest bardzo nierównomiernie rozłożone pomiędzy gatunkami.
Goryle, na przykład, używają zawołania przypominającego spółgłoskę, ale jest ono rozpowszechnione tylko w pewnych populacjach. Niektóre grupy szympansów posługują się jednym czy dwoma zawołaniami jak spółgłoski powiązanymi z konkretnym zachowaniem, ale takie zawołania przy tym zachowaniu rzadko zdarzają się wśród innych grup, mówi uczony.
Tymczasem orangutany używają pełnego bogactwa zawołań podobnych do spółgłosek, jest ono widoczne w różnych populacjach i dotyczy różnych zachowań, podobnie jak ma to miejsce w ludzkiej mowie. Ich repertuar wokalny jest pełen kliknięć, cmoknięć, parsknięć, prychnięć czy dźwięków przypominających pocałunki, dodaje.
Uczony od 18 lat obserwuje orangutany w naturalnym środowisku i uważa, że to ich nadrzewny tryb życia i sposób zdobywania pożywienia mogą wyjaśniać bogactwo wydawanych przez nich dźwięków przypominających spółgłoski. Wszystkie małpy to zręczni zbieracze. Wypracowały złożone mechanizmy zdobywania trudno dostępnej żywności, zamkniętej np. w orzechach. Jej zdobycie wymaga użycia rąk lub narzędzi. Goryle czy szympansy potrzebują stabilnej pozycji na ziemi, by dostać się do takiego pożywienia i używać narzędzi. Jednak orangutany w dużej mierze żyją na drzewach, tam zdobywają pożywienie, a co najmniej jedna z kończyn jest ciągle zajęta zapewnianiem zwierzęciu stabilności. Z tego też powodu u orangutanów rozwinęła się większa kontrola nad wargami, językiem i szczęką. Mogą używać ust jako dodatkowego narzędzia. Znane są np. z tego, że za pomocą samych warg potrafią obrać pomarańczę. Ich kontrola motoryczna nad ustami jest znacznie większa niż u małp afrykańskich, jest niezbędną częścią ich biologii, mówi Lameira. Skutkiem ubocznym lepszej kontroli nad wargami, językiem i szczęką jest zaś zdolność do artykułowania dźwięków podobnych do spółgłosek. To zaś może oznaczać, że nasi przodkowie byli bardziej zależni od drzew, niż obecnie sądzimy.
Dlaczego więc u innych żyjących na drzewach małp nie pojawiła się zdolność do wydawania dźwięków podobnych do spółgłosek? Uczony wyjaśnia, że są to mniejsze zwierzęta, do tego posiadające ogony i żywiące się w nieco inny sposób, zatem nie potrzebują aż tak zręcznych ust i języków jak orangutany. Praca Lameiry jest dostępna na łamach Trends in Cognitive Sciences.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Jedną z najtrudniejszych umiejętności językowych jest rozumienie składni zdań złożonych. W 2019 roku naukowcy zauważyli, że istnieje korelacja pomiędzy wysokimi umiejętnościami używania narzędzi, a zdolnością do rozumienia złożonej składni. Szwedzko-francuski zespół naukowy informuje, że obie te umiejętności – sprawnego posługiwania się narzędziami oraz złożoną składnią – korzystają z tych samych zasobów neurologicznych w tym samym regionie mózgu. To jednak nie wszystko. Okazało się, że rozwijanie jednej z tych umiejętności wpływa na drugą.
Uczeni z francuskiego Narodowego Instytutu Zdrowia i Badań Medycznych (Inserm), Narodowego Centrum Badań Naukowych (CNRS), Université Claude Bernard Lyon 1, Université Lumière Lyon 2 i Karolinska Institutet zauważyli, że trening w posługiwaniu się narzędziami poprawia zdolność rozumienia złożonych zdań. I na odwrót. Jeśli ćwiczymy rozumienie złożonych zdań, poprawiają się nasze umiejętności posługiwania się narzędziami. Odkrycie to można będzie wykorzystać podczas rehabilitacji osób, które częściowo utraciły zdolności językowe.
Przez długi czas uważano, że używanie języka to niezwykle złożona umiejętność, która wymaga wyspecjalizowanych obszarów mózgu. Jednak w ostatnich latach pogląd ten ulega zmianie. Kolejne badania wskazują, że ośrodki kontroli niektórych funkcji językowych, na przykład odpowiadające za rozumienie słów, są też zaangażowane w kontrolowanie funkcji motorycznych. Jednak badania obrazowe nie dostarczały dowodów na istnienie związku pomiędzy używaniem języka i narzędzi. Z drugiej jednak strony badania paloneurobiologiczne wykazały, że obszary mózgu odpowiedzialne za posługiwanie się językiem rozwijały się u naszych przodków w okresach większego rozwoju technologicznego, gdy wśród naszych praszczurów rozpowszechniało się użycie narzędzi.
Naukowcy, analizujący dostępne dane, zaczęli się zastanawiać czy jest możliwe, by używanie narzędzi, operowanie którymi wymaga wykonywania złożonych ruchów, było kontrolowane przez te same obszary mózgu co używanie funkcji językowych.
W 2019 roku Claudio Brozzoli z Inserm i Alice C. Roy z CNRS wykazali, że osoby, które szczególnie dobrze posługują się narzędziami, zwykle też lepiej posługują się złożoną składnią zdań w języku szwedzkim. Naukowcy postanowili bliżej przyjrzeć się temu zjawisku i zaplanowali serię eksperymentów, w czasie których wykorzystano m.in. rezonans magnetyczny. Badanych proszono o wykonanie testów związanych z użyciem 30-centymetrowych szczypiec oraz zdań złożonych w języku francuskim. Dzięki temu uczeni zidentyfikowali obszary mózgu odpowiedzialne za wykonywanie każdego z tych zadań oraz wspólnych dla obu zadań.
Jako pierwsi stwierdzili, że używanie narzędzi i złożonej składni aktywuje ten sam obszar w jądrze podstawnym w mózgu. Wówczas zaczęli zastanawiać się, czy ćwicząc jedną z tych umiejętności, można by wpływać na drugą.
Uczestników badań poproszono więc o wypełnienie testów rozumienia złożonych zdań. Testy takie wypełniali 30 minut przed i 30 minut po ćwiczeniu ze szczypcami. Ćwiczenie to polegało na użyciu dużych szczypiec do umieszczenia niewielkich kołków w otworach odpowiadających im kształtem, ale o różnej orientacji. Przed i po takim ćwiczeniu porównywano, jak uczestnicy badań radzą sobie z rozumieniem prostszego i bardziej złożonego zdania. Okazało się, że po ćwiczeniu ze szczypcami badani lepiej radzili sobie ze zrozumieniem trudniejszych zdań. Z kolei w grupie kontrolnej, która używała dłoni do wkładania kołków w otworach, nie zauważono tego typu poprawy rozumienia zdań.
Teraz naukowcy opracowują protokoły rehabilitacji osób, które utraciły część umiejętności językowych, ale zachowały zdolności motoryczne. Jednocześnie zauważają, że ich badania lepiej pomagają nam zrozumieć ewolucję H. sapiens. Gdy nasi przodkowie zaczęli wytwarzać i używać narzędzi, znacznie zmieniło ich to mózg i wpłynęło na zdolności poznawcze, co mogło doprowadzić do pojawienia się innych funkcji, jak zdolności językowe, stwierdzają naukowcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dotychczas sądzono, że struktury w naszym mózgu, które umożliwiły rozwój mowy, pojawiły się w nim przed 5 milionami lat. Teraz międzynarodowy zespół naukowy przesunął ten termin i to znacznie. Europejscy i amerykańscy uczeni twierdzą, że początków takich struktur należy szukać co najmniej 25 milionów lat temu. Odkrycie opisano na łamach Nature.
Znalezienie takiej struktury jest dla neurologów jak znalezienie skamieniałości, która rzuca nowe światło na ewolucję. Musimy jednak pamiętać, że mózgi nie ulegają fosylizacji. Dlatego też eksperci muszą próbować odtwarzać ewolucję mózgu porównując mózgi obecnie żyjących naczelnych i człowieka.
Kluczową strukturą dla rozwoju mowy jest pęczek łukowaty (AF). To wiązka włókien kojarzeniowych rozciągających się od płata skroniowego po płat czołowy. Zespół z USA, Wielkiej Brytanii i Niemiec wykorzystał ogólnodostępne skany mózgu człowieka, szympansa i makaka królewskiego, a następnie przeprowadził analizę odpowiednich obszarów. Uczeni odkryli istnienie homologicznej struktury rozpoczynającej się w korze słuchowej.
Wiadomo, że szympansy posiadają strukturę homologiczną (czyli mającą wspólne z człowiekiem pochodzenie ewolucyjne) do ludzkiego pęczka łukowatego, ale istnieją już spory co do tego, że podobna struktura występuje u makaków. Ostatnie dowody naukowe wskazują, że różnicowanie się pęczka łukowatego jest związane z rozrastaniem się zakrętu skroniowego środkowego (MTG). To wyróżniająca się struktura u ludzi, która jest wyraźnie widoczna też u szympansów, ale nie stwierdzono jej u nieczłowiekowatych.
Autorzy najnowszych badań postanowili sprawdzić, czy struktura homologiczna do AF może u nieczłowiekowatych istnieć pomimo braku u nich MTG. Mogliśmy tylko przypuszczać, ale nie byliśmy pewni, czy u nieczłowiekowatych istnieją homologiczne struktury, co u człowieka. Przyznam, że byłem zaskoczony ich odkryciem, mówi profesor Chris Petkov z Newcastle University.
Badania te rzucają nowe światło na ewolucyjne początku AF. Wskazują na fragment AF związany ze zmysłem słuchu i dowodzą istnienia homologicznej struktury u szympansów i makaka królewskiego, czytamy w opublikowanej pracy. Okazało się też, że o ile u małp nieczłowiekowatych AF jest dość symetryczna, to u ludzi występuje silna asymetria, z bardziej rozwiniętą lewą stroną struktury, która odgrywa zasadniczą rolę w rozwoju mowy.
Biorąc pod uwagę fakt, że asymetria taka występuje też u szympansów, można stwierdzić, że struktury w mózgu potrzebne do pojawienia się mowy zaczęły przybierać ostateczną formę u wspólnego przodka człowieka i małp człowiekowatych, z późniejszym jeszcze różnicowaniem u naszych bezpośrednich przodków. Jednak obecne badania wskazują, że wspólni przodkowie małp i małp człekokształtnych posiadali symetryczną strukturę łączącą części płata skroniowego odpowiedzialne za słuch z dolną częścią płata czołowego. U ludzi w tych obszarach znajdują się dwie niezwykle ważne dla rozwoju mowy struktury – ośrodek Wernickiego i ośrodek Broki.
Nasze badania przesunęły pojawienie się prototypu AF odpowiedzialnego za rozpoznawanie mowy do czasu ostatniego wspólnego przodka ludzi i makaków (około 25 milionów lat temu), podczas gdy do niedawna sądzono, że początków tych struktur należy szukać u ostatniego wspólnego przodka ludzi i szympansów sprzed około 5 milionów lat, stwierdzili autorzy odkrycia. Nasze obserwacje zgadzają się też z hipotezą, że zdolność do przetwarzania języka rozwinęła się ze struktur odpowiedzialnych za słuch, dodają.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Włosi to jedni z najszybszych mówców na Ziemi. Wymawiają oni nawet do 9 sylab w ciągu sekundy. Na drugim biegunie znajduje się wielu Niemców, którzy w ciągu sekundy wymawiają 5-6 sylab. Jednak, jak wynika z najnowszych badań, średnio w ciągu minuty i Niemcy i Włosi przekazują tę samą ilość informacji. Okazuje się, że niezależnie od tego, jak szybka jest wymowa danego języka, średnie tempo przekazywania informacji wynosi 39 bitów na sekundę. To około 2-krotnie szybciej niż komunikacja za pomocą alfabetu Morse'a.
Językoznawcy od dawna podejrzewali, że te języki, które są bardziej upakowane informacją, które w mniejszych jednostkach przekazują więcej danych na temat czasu czy płci, są wymawiane wolniej, a takie, które przekazują mniej tego typu danych, są wymawiane szybciej. Dotychczas jednak nikomu nie udało się tego zbadać.
Badania nad tym zagadnieniem rozpoczęto od analizy tekstów pisanych w 17 językach, w tym w angielskim, włoskim, japońskim i wietnamskim. Uczeni wyliczyli gęstość informacji w każdej sylabie dla danego języka. Okazało się, że na przykład w języku japońskim, w którym występują zaledwie 643 sylaby, gęstość informacji wynosi nieco około 5 bitów na sylabę. W angielskim z jego 6949 sylabami jest to nieco ponad 7 bitów na sylabę.
W ramach kolejnego etapu badań naukowcy znaleźli po 10 użytkowników (5 mężczyzn i 5 kobiet) 14 z badanych języków. Każdy z użytkowników na głos czytał 15 identycznych tekstów przetłumaczonych na jego język. Naukowcy mierzyli czas, w jakim tekst zostały odczytane i liczyli tempo przekazywania informacji.
Uczeni wiedzieli, że jedne języki są szybciej wymawiane od innych. Gdy jednak przeliczyli ilość przekazywanych informacji w jednostce czasu zaskoczyło ich, że dla każdego języka uzyskali podobny wynik. Niezależnie od tego, czy język był mówiony szybko czy powoli, tempo przekazywania informacji wynosiło około 39,15 bitów na sekundę.
Czasem interesujące fakty ukrywają się na widoku, mówi współautor badań, Francois Pellegrino z Uniwersytetu w Lyonie. Lingwistyka od dawna zajmowała się badaniem takich cech języków jak np. złożoność gramatyczna i nie przywiązywano zbytnio wagi do tempa przekazywania informacji.
Rodzi się pytanie, dlaczego wszystkie języki przekazują informacje w podobnym tempie. Pellegrino i jego zespół podejrzewają, że odpowiedź tkwi w naszych mózgach i ich zdolności do przetworzenia informacji. Hipoteza taka znajduje swoje oparcie w badaniach sprzed kilku lat, których autorzy stwierdzili, że w amerykańskim angielskim górną granicą przetwarzania informacji dźwiękowych jest 9 sylab na sekundę.
Bart de Boer, lingwista ewolucyjny z Brukseli, zgadza się, że ograniczenie tkwi w mózgu, ale nie tempie przetwarzania informacji, ale w tempie, w jakim jesteśmy w stanie zebrać własne myśli. Zauważa on bowiem, że przeciętna osoba może wysłuchiwać mowy odtwarzanej z 20-procentowym przyspieszeniem i nie ma problemu z jej zrozumieniem. Wąskim gardłem jest tutaj złożenie przekazywanych danych w całość, mówi uczony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Już pojedyncza sesja ćwiczeń wystarczy, by zwiększyć aktywację obwodów mózgowych związanych z pamięcią, w tym hipokampa, który kurczy się z wiekiem.
Dotąd udało się wykazać, że regularne ćwiczenia mogą zwiększać objętość hipokampa. Nasze badanie uzupełnia wiedzę na ten temat i pokazuje, że pojedyncze sesje ćwiczeń [ang. acute exercise] także mogą wpłynąć na ten ważny obszar mózgu - podkreśla dr J. Carson Smith ze Szkoły Zdrowia Publicznego Uniwersytetu Maryland.
Zespół Smitha mierzył za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) aktywność mózgu 26 zdrowych ochotników w wieku 55-85 lat, którzy mieli wykonywać zadanie pamięciowe (identyfikowali sławne i "zwykłe" nazwiska). Co istotne, zapamiętywanie sławnych nazwisk aktywuje sieć neuronalną związaną z pamięcią semantyczną, która pogarsza się z wiekiem.
Test przeprowadzano 2-krotnie na oddzielnych wizytach w laboratorium: 1) pół godziny po sesji umiarkowanie intensywnych ćwiczeń (70% maksymalnego wysiłku) na rowerze stacjonarnym albo 2) po okresie odpoczynku.
Sesja ćwiczeń wiązała się z zachodzącą w odpowiednim momencie większą aktywacją pamięci semantycznej w zakręcie czołowym środkowym, zakręcie skroniowym dolnym, zakręcie skroniowym środkowym i zakręcie wrzecionowatym. Widoczna była także zwiększona obustronna aktywacja hipokampa.
[...] Pojedyncze sesje ćwiczeń mogą wpływać na poznawcze obwody neuronalne w korzystny sposób, który sprzyja długoterminowym adaptacjom i przyczynia się do zwiększonej integralności/lepszego działania sieci, a więc skuteczniejszego dostępu do wspomnień.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.