Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Może poprzez kontrast z poruszającymi się zwierzętami, rośliny wydają się bardzo biernymi organizmami. Tak jednak nie jest. Josef Stuefer z Radboud University Nijmegen natrafił właśnie na ślad układu, za pośrednictwem którego poszczególne okazy się ze sobą porozumiewają i ostrzegają przed nadchodzącym niebezpieczeństwem.

Sporo roślin zielnych, np. truskawki, koniczyna czy podagrycznik pospolity, wytwarza wąsy, czyli rozłogi. Są to wydłużone pędy, które płożą się nad powierzchnią gruntu. Zakorzeniają się w węzłach i tam wyrasta nowa roślina. Jest połączona z rośliną macierzystą, dopóki ta żyje lub dopóki nie zostanie od niej oderwana. To właśnie wewnątrz rozłogów biegną kanały wykorzystywane do komunikowania się. Układ do złudzenia przypomina sieć komputerową.

Stuefer i zespół zademonstrowali, że za pośrednictwem nowo odkrytego "interkomu" koniczyny ostrzegają się nawzajem, że w pobliżu znajduje się wróg. Jeśli jedna roślina zostanie zaatakowana przez gąsienicę, pozostałe podłączone egzemplarze na pewno się o tym dowiedzą. Wzmocnią swoją odporność chemiczną oraz mechaniczną i staną się mniej atrakcyjnym kąskiem. Dzięki systemowi wczesnego ostrzegania rośliny zawsze o krok wyprzedzają najeźdźców. Eksperymenty wykazały, że znacznie zmniejsza to ponoszone straty.

Niestety, połączenie w sieć ma też i swoje minusy. Jeśli jeden z jej elementów zostanie zakażony wirusem, infekcja obejmie wszystkie pozostałe.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wirusolodzy od dawna wiedzą o niezwykłym zjawisku dotyczącym wirusów atakujących drogi oddechowe. Dla patogenów tych naturalnym środowiskiem są ciepłe i wilgotne drogi oddechowe. Ich względna wilgotność wynosi zwykle 100%. Wystawienie na bardziej suche powietrze poza organizmem powinno szybko niszczyć wirusy. Jednak wykres czasu ich przeżywalności w powietrzu układa się w literę U.
      Przy wysokiej wilgotności wirus może przetrwać dość długo, gdy wilgotność spada, czas ten ulega skróceniu, ale w pewnym momencie trend się odwraca i wraz ze spadającą wilgotnością powietrza czas przetrwania wirusów... zaczyna się wydłużać.
      Naukowcy od dawna zastanawiali się, dlaczego przeżywalność wirusów zaczyna rosnąć, gdy względna wilgotność powietrza zmniejszy się do 50–80 procent. Odpowiedzią mogą być przejścia fazowe w ośrodku, w którym znajdują się wirusy. Ray Davis i jego koledzy z Trinity University w Teksanie zauważyli, że w bogatych w białka aerozole i krople – a wirusy składają się z białek – w pewnym momencie wraz ze spadkiem wilgotności zachodzą zmiany strukturalne.
      Jedna z dotychczasowych hipotez wyjaśniających kształt wykresu przeżywalności wirusów w powietrzu o zmiennej wilgotności przypisywała ten fenomen zjawisku, w wyniku którego związki nieorganiczne znajdujące się w kropli, w której są wirusy, w miarę odparowywania wody migrują na zewnątrz kropli, krystalizują i tworzą w ten sposób powłokę ochronną wokół wirusów.
      Davis i jego zespół badali aerozole i kropelki złożone z soli i białek, modelowych składników dróg oddechowych. Były one umieszczone na specjalnym podłożu wykorzystywanym do badania możliwości przeżycia patogenów.
      Okazało się, że poniżej 53-procentowej wilgotności krople badanych płynów tworzyły złożone wydłużone kształty. Pod mikroskopem było zaś widać, że doszło do rozdzielenia frakcji płynnej i stałej. Zdaniem naukowców, to dowód na przemianę fazową, podczas której jony wapnia łączą się z proteinami, tworząc żel. Zauważono jednak pewną subtelną różnicę. O ile w aerozolach do przemiany takiej dochodzi w ciągu sekund, dzięki czemu wirusy mogą przeżyć, to w większych kroplach proces ten zachodzi wolnej i zanim dojdzie do chroniącego wirusy przejścia fazowego, patogeny mogą zginąć.
      Naukowcy sądzą, że kluczowym elementem dla zdolności przeżycia wirusów, które wydostały się z dróg oddechowych, jest skład organiczny kropli i aerozoli. Ten zaś może zależeć od choroby i stopnia jej zaawansowania. Następnym etapem prac nad tym zagadnieniem powinno być systematyczne sprawdzenie składu różnych kropli oraz wirusów w nich obecnych, co pozwoli zrozumieć, jak działa proces dezaktywacji wirusów w powietrzu, mówi Davis.
      Zdaniem eksperta od aerozoli, Petera Raynora z University of Minnesota, badania takie można będzie w praktyce wykorzystać np. zapewniając odpowiedni poziom wilgotności powietrza w budynkach w zimie, nie tylko dla komfortu ludzi, ale również po to, by stworzyć najmniej korzystne warunki dla przetrwania wirusów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Firma BitDefender poinformowała o powrocie wirusa, który po raz pierwszy pojawił się przed sześciu laty na witrynie firmy Hewlett-Packard. Tym razem szkodliwy kod znaleziono w sterowniku jednego z urządzeń sprzedawanych przez HP.
      Funlove, bo o nim mowa, został odkryty na serwerze FTP wspomnianego koncernu. Przedstawiciele HP zostali o nim poinformowali i usunęli już aplikację zawierającą szkodliwy kod.
      To dowód na to, jak ważne jest filtrowanie ruchu wychodzącego w środowisku biznesowym. Pokazuje też jak wielkie zdolności do przetrwania ma szkodliwe oprogramowanie – powiedział Bogdan Dumitru, odpowiedzialny w BitDefenderze za sprawy technologii.
      Funlove usiłuje zdobyć przywileje administracyjne w systemie Windows NT dając w ten sposób cyberprzestępcom zdalny dostęp do zaatakowanej maszyny. Wirus infekuje również systemy Windows 9x, ME oraz Windows 2000.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Oddziaływanie roślin na zdrowie człowieka jest faktem niepodważalnym. Liczne badania naukowe dowodzą, że różne formy kontaktu z roślinami mają wpływ na poprawę kondycji psychicznej i fizycznej. Istotny wpływ na nasze zdrowie mają także rośliny we wnętrzach. Mogą one zniwelować negatywne oddziaływanie warunków miejskich, głównie dlatego, że umożliwiają bezpośredni kontakt z roślinami w miejscach, gdzie spędzamy większość czasu, czyli w pomieszczeniach.
      W mieszkaniach rośliny najczęściej zaspokajają potrzeby estetyczne, poprawiają jakość powietrza, a przez wysiłek fizyczny wkładany w ich pielęgnację, mają pozytywny wpływ na naszą kondycję fizyczną. Już sadzenie roślin w pojemnikach oddziałuje pozytywnie na nasze samopoczucie. Wykonywanie prac przy roślinach przez osoby schorowane i starsze wpływa nie tylko na kondycję fizyczną, ale i psychiczną, np. zwiększa siłę i masę mięśni, przyczynia się do lepszej koordynacji ruchowej, obniża stres i agresję. Badania wśród chorych na schizofrenię potwierdziły, że wpatrywanie się przez kilka minut w niektóre gatunki roślin doniczkowych powoduje obniżenie ciśnienia krwi i częstotliwość uderzeń serca.
      Szczególnie istotną funkcją roślin we wnętrzach jest poprawienie jakości powietrza. Z licznych badań wynika, że umieszczenie roślin doniczkowych w biurach i klasach szkolnych zmniejsza występowanie bólów głowy, chorób gardła oraz poprawia samopoczucie przebywających w pomieszczeniach. Uprawa roślin w pomieszczeniach przyczynia się także do zwiększenia wilgotności powietrza. Ma to istotne znaczenie, ponieważ współczesne materiały budowlane powodują jej obniżenie. Powietrze w nowych budynkach mieszkalnych i biurowych jest bardzo suche; wilgotność sięga zaledwie 20-30%. Bardzo skutecznym sposobem zwiększania wilgotności powietrza w pomieszczeniach jest uprawa roślin. Roślina podczas transpiracji wyparowuje wodę przez nadziemne organy.
      Im większa roślina, większa powierzchnia liści, tym bardziej roślina nawilża powietrze. Transpirowana przez rośliny para może zawierać substancje (fitoncydy), które wyciszają rozwój drobnoustrojów w powietrzu. Rośliny we wnętrzach, oprócz podwyższania wilgotności powietrza, wpływają także na jego jakość. Rośliny uprawiane w pomieszczeniach oczyszczają powietrze ze szkodliwych związków lotnych. Według Amerykańskiej Agencji Ochrony Środowiska, w pomieszczeniach, zwłaszcza biurowych, może być nawet 900 różnych szkodliwych związków, a niektóre z nich przekraczają normy nawet ponad 100-krotnie. Przyczyn złej jakości powietrza w pomieszczeniach jest kilka: ich szczelność, niewłaściwa wentylacja, niska wilgotność względna powietrza, emisje substancji toksycznych, wydzieliny biologiczne. Wśród zanieczyszczeń toksycznymi związkami lotnymi znajdują się: formaldehyd, ksylen, toluen, benzen, trójchloroetylen, etylen i alkohole. Źródłem tych związków są w dużej mierze materiały budowlane, elementy wykończenia wnętrz, farby, lakiery oraz sprzęt biurowy, zwłaszcza drukarki. Związki te powodują podrażnienia błon śluzowych, zawroty i bóle głowy, znużenie, nudności, biegunki, niektóre są nawet rakotwórcze. Są nawet określone symptomy związane z tzw. zespołem chorego budynku, takie jak: alergie, astma, zmęczenie, ból głowy, zaburzenia systemu nerwowego oraz trudności z oddychaniem. Na podstawie licznych badań wykazano, że obecność żywych roślin w pomieszczeniach korzystnie wpływa na samopoczucie oraz zdrowie człowieka. Rośliny do dekoracji wnętrz dzieli się pod względem walorów ozdobnych na gatunki o ozdobnych kwiatach i o ozdobnych liściach. Pod względem estetycznym ciekawsze są rośliny kwitnące, gdzie misterna budowa kwiatów zawsze wzbudza podziw. Jednak biorąc pod uwagę funkcje oczyszczania powietrza z toksyn i podnoszenia jego wilgotności, korzystniej jest uprawiać rośliny o ozdobnych liściach. Do dekoracji pomieszczeń dysponujemy dziś około 1000 różnych taksonów roślin. Są one zróżnicowane pod względem przynależności systematycznej, pochodzenia i wyglądu zewnętrznego. Do roślin najskuteczniej usuwających formaldehyd z powietrza należą: popularna paproć - nefrolepis wysoki, palmy – złotowiec lśniący oraz daktylowiec karłowy, draceny: deremeńska, obrzeżona i wonna, popularny storczyk – falenopsis, figowce – benjamiński i sprężysty, epipremnum złociste, skrzydłokwiat i wiele innych gatunków.
      Podsumowując, każda roślina we wnętrzu korzystnie oddziałuje na nasze samopoczucie i jakość powietrza w pomieszczeniach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zwierzęta morskie utrzymują równowagę wśród wirusów zamieszkujących wodę. Biolog morski Jennifer Welsh będzie w najbliższy poniedziałek broniła – oczywiście online – pracy doktorskiej na Wolnym Uniwersytecie w Amsterdamie. Jej temat brzmi Marine virus predation by non-host organism.
      Wirusy to najbardziej rozpowszechnione cząstki biologiczne w środowisku morskim. Niewiele jednak wiadomo o potencjalnych skutkach ekologicznych procesu usuwania wirusów przez organizmy nie będące ich gospodarzami, czytamy w artykule, który Welsh opublikowała na łamach Nature. Wiemy, że wirusy, poprzez uśmiercanie czy skracanie życia w inny sposób, regulują populację organizmów będących ich gospodarzami. Pani Welsh chciała się dowiedzieć, jak populacja wirusów jest regulowana przez organizmy nie będące ich gospodarzami.
      Wirusy mogą być pożywieniem dla wielu organizmów. Na przykład ostryżyca japońska filtruje wodę, by pobierać z niej tlen, glony i bakterie. Przy okazji pochłania jednak wirusy. Podczas naszych eksperymentów nie podawaliśmy ostryżycom żadnego pożywienia. Filtrowały wodę tylko po to, by pobrać z niej tlen. Okazało się, że usunęły z wody 12% wirusów, mówi Welsh.
      Jednak to nie ostryżyce najbardziej efektywnie usuwały wirusy. Uplasowały się dopiero na 4. pozycji wśród zwierząt badanych przez Welsh. Z organizmów, które testowaliśmy, najlepiej sprawowały się gąbki, kraby i sercówki. Podczas naszych eksperymentów w ciągu trzech godzin gąbki usunęły z wody aż 94% wirusów. Nawet, gdy co 20 minut dostarczaliśmy do wody kolejny zestaw wirusów gąbki niezwykle efektywnie je usuwały, mówi uczona.
      Welsh dodaje, że uzyskanych przez nią wyników nie można przekładać wprost na środowisko naturalne. Tam sytuacja jest znacznie bardziej złożona. Obecnych jest bowiem wiele innych gatunków, które wpływają na siebie nawzajem. Na przykład, gdy ostryżyca filtruje wodę i w pobliżu znajdzie się krab, ostryżyca zamyka skorupę i przestaje filtrować. Ponadto na zwierzęta mają wpływ ruchy wody, temperatura, promieniowanie ultrafioletowe, wyjaśnia.
      Badania Welsh przydadzą się w akwakulturze. Ryby hoduje się tam w zamknięciu w wodach oceanicznych. W takich farmach słonej wody olbrzyma liczba zwierząt z jednego gatunku jest trzymana w monokulturze. Jeśli w takich hodowli wybuchnie epidemia, istnieje wysokie ryzyko, że patogen rozprzestrzeni się na żyjące w oceanie dzikie populacje. Jeśli do takiej hodowli dodamy wystarczającą liczbę gąbek, możemy zapobiec rozprzestrzenianiu się epidemii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wirusy należą do najmniej poznanych cząstek na Ziemi. Jako, że nie są one w stanie przeżyć i mnożyć się bez gospodarza, niektórzy nie uważają ich nawet za organizmy żywe. Tymczasem brazylijscy naukowcy odkryli wirusa, którego genom składa się wyłącznie z genów nieznanych nauce.
      Odkrywca nowego wirusa, Jônatas Abrahão z Uniwersytetu Federalnego Minas Gerais, mówi, że to pokazuje, jak wiele jeszcze musimy się o wirusach nauczyć.
      Naukowiec trafił na niezwykłego wirusa gdy poszukiwał wielkich wirusów o rozmiarach bakterii. W lokalnym sztucznym zbiorniku wodnym znalazł nie tylko wielkie wirusy, ale też nowego niewielkiego wirusa, który był niepodobny do wirusów infekujących ameby. Uczeni nazwali go Yarawirusem.
      Mikroorganizm okazał się niezwykły nie tylko ze względu na swoje rozmiary. Gdy naukowcy zsekwencjonowali genom wirusa i porównali go z bazami danych dotyczącymi innych wirusów okazało się, z żaden z genów Yarawirusa nie był wcześniej znany nauce.
      Odkryciem nie jest zaskoczona Elodie Ghedin z New York University, która bada wirusy obecne w ściekach i drogach oddechowych. Uczona mówi, że 95% wirusów znajdowanych w ściekach to nowe organizmy.
      Jeszcze innego odkrycia, tym razem masowego, dokonali Christopher Buck i Michael Tisza, wirusolodzy z amerykańskiego National Cancer Institute. Poszukiwali oni w tkankach ludzkich i zwierzęcych wirusów z kolistym dsDNA. do takich wirusów należy np. wirus brodawczaka ludzkiego. Naukowców interesowały te wirusy, gdyż – przynajmniej niektóre z nich – biorą udział w powstawaniu nowotworów.
      Buck i Tisza wyizolowali fragmenty wirusów z dziesiątków próbek tkanek zwierząt oraz ludzi i poszukiwali tych z kolistym dsDNA. Zidentyfikowali w ten sposób około 2500 wirusów, z których około 600 jest nowych dla nauki.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...