Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Planeta, która przeżyła
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Solar Orbiter, misja Europejskiej Agencji Kosmicznej, wyróżniła dwa rodzaje wysokoenergetycznych cząstek wystrzeliwanych ze Słońca i wyśledziła źródła obu rodzajów. O ile oba typy były znane już wcześniej, teraz dzięki misji ESA wiemy, skąd się one biorą i jak powstają. W ten sposób dodatkowo poszerzyliśmy naszą wiedzę o Słońcu, największym akceleratorze cząstek w Układzie Słonecznym, który decyduje o tym, co dzieje się na Ziemi i wokół niej.
Wysokoenergetyczne elektrony pochodzące ze Słońca mają dwa źródła. Jednym są rozbłyski słoneczne, czyli eksplozje mające miejsce na niewielkich obszarach, a drugim źródłem są koronalne wyrzuty masy, czyli duże erupcje. Widzimy wyraźną różnicę pomiędzy gwałtownymi impulsami, gdy wysokoenergetyczne elektrony są wyrzucane z powierzchni Słońca oraz stopniowo rozwijającymi się erupcjami, w wyniku których przez dłuższy czas wyrzucane są różnorodne cząstki, mówi główny autor badań Alexander Warmuth z Instytutu Astrofizyki im. Leibniza w Poczdamie. Teraz mogliśmy podlecieć na tyle blisko Słońca, by zbadać te cząstki na wczesnym etapie powstawania i dokładnie określić czas i miejsce ich narodzin na Słońcu, dodaje uczony.
W czasie badań wykorzystano 8 z 10 instrumentów naukowych Solar Orbitera, a dane zbierano od listopada 2020 do grudnia 2022. Pojazd mierzył cząstki in situ, przelatując przez ich strumienie i jednocześnie obserwując to, co dzieje się na Słońcu oraz zbierając informacje na temat obszaru pomiędzy Słońcem a sobą samym. Orbiter badał cząstki w różnych odległościach od Słońca, co pozwoliło odpowiedzieć na wiele pytań ich dotyczących. Często bowiem, gdy obserwujemy rozbłysk czy koronalny wyrzut masy mija bardzo dużo czasu, zanim wykryjemy wysokoenergetyczne elektrony. Okazuje się, że częściowo dzieje się tak przez sposób ich podróżowania w przestrzeni. Może być to spowodowane opóźnieniem w wystrzeleniu elektronów, ale również opóźnieniem w ich wykryciu. Elektrony na swojej drodze napotykają różne turbulencje, zostają rozproszone itp. itd. A tego typu przeszkody mnożą się, im dalej jesteśmy od Słońca. Więc nie wykrywamy elektronów natychmiast, dodaje Laura Rodríguez-García.
Musimy pamiętać, że przestrzeń w Układzie Słonecznym nie jest pusta. Wypełniona jest wiatrem słonecznym, który niesie ze sobą pole magnetyczne Słońca. Decyduje on, w jaki sposób mogą rozprzestrzeniać się elektrony. Nie podróżują one swobodnie, o tym, jak się przemieszczają decyduje wiatr słoneczny i pole magnetyczne.
Zdobyta właśnie wiedza może okazać się w przyszłości ważna dla bezpieczeństwa na Ziemi i wokół niej. Elektrony związane z koronalnymi wyrzutami masy są zagrożeniem dla satelitów, pojazdów kosmicznych i astronautów. Lepsze zrozumienie tych cząstek pozwoli w przyszłości na stosowanie lepszych metod ochrony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowców z Izraela, USA, Wielkiej Brytanii, Danii i Finlandii, znalazł dowody świadczące o tym, że gwiazda przetrwała spotkanie z supermasywną czarną dziurą. Do takich wniosków uczeni doszli, gdy niedawno zauważyli rozbłysk, który bardzo przypominał rozbłysk AT 2022dbl sprzed 700 dni. Ten wcześniejszy zaobserwowano dokładnie w tym samym miejscu, co późniejszy, a charakterystyki obu były niezwykle podobne. Badacze wysnuli więc wniosek, że oba rozbłyski spowodowało przejście tej samej gwiazdy w pobliżu czarnej dziury. A to oznacza, że gwiazda przetrwała pierwsze spotkanie.
Gdy gwiazda znajdzie się zbyt blisko supermasywnej czarnej dziury, jest rozrywana przez siły pływowe. Połowa jej masy trafia do czarnej dziury, połowa jest odrzucana. Astronomowie niejednokrotnie obserwowali rozbłyski, świadczące o rozerwaniu gwiazdy przez czarną dziurę. Takie obserwacje pozwalają poznać właściwości czarnych dziur i ich dysku akrecyjnego. Centralną czarną dziurę Drogi Mlecznej możemy badać wykorzystując w tym celu ruch pobliskich gwiazd. Jednak w odniesieniu do innych galaktyk naukowcy muszą polegać na rzadkich wysokoenergetycznych wydarzeniach, pozwalających w ogóle stwierdzić obecność czarnej dziury.
Szacuje się, że raz na 10 000 – 100 000 lat gwiazda może zbliżyć się do czarnej dziury tak blisko, że zostanie rozerwana. Wówczas połowa jej materiału opada na dziurę po spiralnej trajektorii. W bezpośrednim sąsiedztwie dziury opadająca materia osiąga niemal prędkość światła, rozgrzewa się i intensywnie promieniuje. Trwa to kilka tygodni lub miesięcy, dając astronomom okazję do badań.
Jednak wiele takich rozbłysków stanowi zagadkę, gdyż ich jasność i temperatura są znacznie niższe, że przewidują teorie. Dlatego naukowcy szukają alternatywnych wyjaśnień tego fenomenu. Niedawno grupa naukowa pracująca pod kierunkiem Uniwersytetu w Tel Awiwie, zidentyfikowała w danych obserwacyjnych rozbłysk, który bardzo przypominał i miał miejsce w tym samym miejscu co rozbłysk AT 2022dbl sprzed 700 dni. Uczeni wysunęli więc hipotezę, że pierwszy rozbłysk był spowodowany częściowym zniszczeniem gwiazdy przez siły pływowe czarnej dziury, a drugi rozbłysk to dowód na ponowną interakcję tej samej gwiazdy i dziury.
Pytanie brzmi, czy zaobserwujemy kolejny rozbłysk po mniej więcej dwóch latach, czyli na początku 2026 roku. Jeśli tak, to będzie oznaczało, że również drugi rozbłysk był wynikiem częściowego zniszczenia gwiazdy. Może więc i inne rozbłyski, których naturę specjaliści próbują wyjaśnić od dekady, nie są spowodowane przez całkowite zniszczenie gwiazdy, zastanawia się profesor Iair Arcavi z Tel Awiwu.
Źródło: The Double Tidal Disruption Event AT 2022dbl Implies that at Least Some “Standard” Optical Tidal Disruption Events Are Partial Disruptions
« powrót do artykułu -
przez KopalniaWiedzy.pl
TOI-6894 to gwiazda jakich wiele, nieduży czerwony karzeł o masie pięciokrotnie mniejszej od masy Słońca. Astronomowie nie spodziewają się, by wokół tak niewielkich gwiazd krążyły duże planety. Podczas ich formowania nie powinno być bowiem warunków do powstania wielkich planet. Jednak uczeni z University College London i University of Warwick dokonali zdumiewającego odkrycia, którego nie potrafią wytłumaczyć.
Wokół TOI-6894 krąży bowiem gazowy olbrzym TOI-6894b o średnicy większej od średnicy Saturna. To odkrycie będzie przełomem w zrozumieniu procesu formowania się gazowych olbrzymów, stwierdzają odkrywcy. Planeta TOI-6894b, zauważona dzięki Very Large Telescope, jest gazowym olbrzymem o niewielkiej gęstości. Przy średnicy większej od Saturna jej masa jest o połowę mniejsza niż olbrzyma z Układu Słonecznego. A jej gwiazda macierzysta to najmniej masywna gwiazda przy której zauważono dużą planetę.
To interesujące odkrycie. Nie rozumiemy, jak gwiazda o tak niskiej masie doprowadziła do powstania tak masywnej planety. To właśnie jeden z celów poszukiwań egzoplanet. Znajdując układy planetarne różne od Układu Słonecznego, możemy przetestować nasze modele i lepiej zrozumieć, jak powstał nas własny system planetarny, mówi doktor Vincent Van Eylen z UCL.
Zgodnie z najszerzej akceptowaną teorią dotyczącą formowania się gazowych olbrzymów, powstają one z dysku akrecyjnego wokół gwiazdy. Znajdujący się tam materiał gromadzi się, tworząc jądro, a gdy staje się ono wystarczająco masywne, zaczyna przyciągać gazy, tworzące atmosferę gazowego olbrzyma. Początkowo proces ten jest powolny, jednak gdy masa atmosfery dorównuje już masie jądra, dochodzi do gwałtownego zasysania gazu z dysku akrecyjnego, a im większa masa, tym proces ten jest szybszy.
Wedle tej teorii utworzenie się gazowych olbrzymów wokół gwiazd o niskiej masie jest trudniejsze, gdyż w ich dysku protoplanetarnym nie ma wystarczająco dużo materiału. Odkrycie TOI-6894b wskazuje, że taki model nie jest dokładny i potrzebne są alternatywne teorie. Być może formowanie się planety przebiegało stopniowo, jej jądro nie było nigdy tak masywne, by rozpoczął się proces gwałtownego zasysania gazu. Być może zaś planeta powstała w grawitacyjnie niestabilnym dysku, który rozpadł się na fragmenty i utworzył planetę. Naukowcy rozważyli oba te scenariusze i uznali, że żaden z nich nie wyjaśnia do końca powstania TOI-6894b. Kwestia więc pozostaje otwarta.
Innym interesującym aspektem nowo odkrytej planety jest temperatura jej atmosfery. Jest ona bowiem niezwykle chłodna. Większość pozasłonecznych gazowych olbrzymów to gorące Jowisze, których atmosfera ma temperaturę 1000–2000 kelwinów. Tymczasem temperatura TOI-6894b to zaledwie 420 kelwinów.
Źródło: A transiting giant planet in orbit around a 0.2-solar-mass host star, https://www.nature.com/articles/s41550-025-02552-4
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niewielka pokryta lawą planeta co 30,5 godziny traci tyle materiału, że wystarczyłoby go na wzniesienie Mount Everest. Astronomowie z Massachusetts Institute of Technology odkryli planetę, która szybko rozpada się na ich oczach. Położona jest w odległości około 140 lat świetlnych od Ziemi. Jest wielkości Merkurego, jednak znajduje się 20-krotnie bliżej swojej gwiazdy, niż Merkury, i obiega ją w ciągu 30,5 godziny. Przy tak niewielkiej odległości planeta prawdopodobnie pokryta jest gotującą się magmą, która ciągle odparowuje w przestrzeń kosmiczną.
Naukowcy zauważyli niezwykłą planetę za pomocą Transiting Exoplanet Survey Satellite (TESS). To teleskop kosmiczny, którego celem jest poszukiwanie pobliskich planet na podstawie ich przejścia na tle gwiazdy macierzystej. W danych z TESS uwagę uczonych zwrócił nietypowy tranzyt, którego siła sygnału zmieniała się wraz z kolejnymi przejściami planety na tle gwiazdy. Szczegółowe badania potwierdziły, że sygnał pochodzi z bliskiej gwieździe planety, która ciągnie za sobą ogon materiału na podobieństwo komety. Długość tego ogona jest gigantyczna. Rozciąga się on na 9 milionów kilometrów, niemal połowę długości orbity planety, mówi Marc Hon z Kavli Institute of Astrophysics and Space Research.
Planeta bardzo szybko traci materiał. Biorąc pod uwagę jej rozmiary i masę, astronomowie obliczają, że całkowicie rozpadnie się w ciągu 1–2 milionów lat. Mieliśmy szczęście, że ją w tym momencie zauważyliśmy. To jej ostatni oddech, dodaje Avi Shporer z TESS Science Office.
Planeta BD+05 4868 Ab została odkryta przypadkiem. Uczeni nie poszukiwali takiego szczególnego obiektu. Prowadzili typowe badania i zwrócili uwagę na niezwykły sygnał. Typowe sygnały z tranzytów to krótkie, regularne spadki jasności gwiazdy, które wskazują, że jakiś obiekt co jakiś czas przechodzi przed gwiazdą, blokując część jej światła. W przypadku BD+05 4868 Ab naukowcy spostrzegli, że o ile do spadków jasności dochodzi co 30,5 godziny, to jasność gwiazdy wraca do normy przez dłuższy czas. To wskazywało na rozciągniętą strukturę podążającą za obiektem, przesłaniającym gwiazdę. A jeszcze bardziej intrygujący był fakt, że za każdym razem kształt wykresu spadku jasności był inny, więc naukowcy stwierdzili, że ta rozciągnięta strukturą za każdym razem musi mieć inny kształt.
Taki tranzyt jest typowy dla komety z długim warkoczem. Jednak było mało prawdopodobne, by taki warkocz – który w przypadku komety składa się z gazu i lodu – przetrwał tak długo w tak niewielkiej odległości od gwiazdy. Co innego, gdyby były to ziarna minerałów odparowane z planety, wyjaśnia Marc Hon.
Naukowcy obliczają, że temperatura na powierzchni planety wynosi około 1600 stopni Celsjusza. Znajdujące się tam minerały gotują się i odparowują, tworząc długi pyłowy ogon ciągnący się za planetą. Do takiego stanu rzeczy przyczynia się niewielka, mniejsza od Merkurego, masa planety. Jest ona na tyle mała, że planeta nie jest w stanie utrzymać atmosfery, która w jakimś stopniu by ją chroniła. To bardzo mały obiekt o bardzo słabej grawitacji. Łatwo więc traci masę, co dodatkowo osłabia jego grawitację, więc traci masę jeszcze łatwiej.
BD+05 4868 Ab to zaledwie czwarta znana nam rozpadająca się planeta. Trzy poprzednie zostały odkryte ponad 10 lat temu przez Teleskop Kosmiczny Keplera. BD+05 4868 Ab ma z nich najdłuższy ogon i generuje najsilniejszy sygnał tranzytu. To zaś wskazuje, że proces rozpadu ma tam znacznie bardziej dramatyczny przebieg niż na trzech pozostałych planetach.
Dzięki temu, że nowo odkryta planeta znajduje się bardzo blisko gwiazdy macierzystej, jest idealnym celem dla Teleskopu Webba, za pomocą którego można będzie zbadać skład jej warkocza, a zatem dowiedzieć się, jaki minerały znajdują się na planecie.
Hon już tego lata rozpocznie obserwacje BD+05 4868 Ab za pomocą Webba. To unikatowa okazja, by bezpośrednio zbadać skład skalistej planety pozasłonecznej. To wiele nam powie o różnorodności takich planet i potencjalnych szansach na istnienia na nich życia, cieszy się uczony.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na łamach Physical Review Research ukazał się artykuł, którego autorzy informują o skonstruowaniu urządzenia generującego energię elektryczną z... ruchu obrotowego Ziemi. Christopher F. Chyba (Princeton University), Kevin P. Hand (Jet Propulsion Laboratory) oraz Thomas H. Chyba (Spectral Sensor Solutions) postanowili przetestować hipotezę, zgodnie z którą energię elektryczną można generować z ruchu obrotowego Ziemi za pomocą specjalnego urządzenia wchodzącego w interakcje z ziemskim polem magnetycznym.
W 2016 roku Christopher Chyba i Kevin Hand opublikowali na łamach Physical Review Applied artykuł, w którym rozważali możliwość użycia ruchu obrotowego Ziemi i jej pola magnetycznego do generowania energii elektrycznej. Artykuł został skrytykowany, gdyż obowiązując teorie wskazywały, że każde napięcie elektryczne wygenerowane w takiej sytuacji zostanie zniwelowane wskutek przemieszczenia się elektronów podczas tworzenia pola elektrycznego.
Naukowcy zaczęli więc szukać sposobów na uniknięcie niwelacji napięcia. Żeby sprawdzić swoje pomysły stworzyli urządzenie złożone z cylindra z ferrytu manganowo-cynkowego, który działał jak osłona magnetyczna. Cylinder umieścili na linii północ-południe pod kątem 57 stopni. W ten sposób był on zorientowany prostopadle do ruchu obrotowego planety i ziemskiego pola magnetycznego. Na obu końca cylindra umieścili elektrody. Pomiary wykazały, że w ten sposób wygenerowali napięcie elektryczne rzędu 18 mikrowoltów, którego nie byli w stanie przypisać do żadnego innego źródła, niż ruch obrotowy Ziemi.
Eksperyment odbywał się w ciemności, by uniknąć efektu fotoelektrycznego, uczeni wzięli pod uwagę napięcie, jakie mogło się pojawić w wyniku różnicy temperatur pomiędzy oboma końcami cylindra. Zauważyli też, że napięcie – zgodnie z przewidywaniami – nie pojawia się przy innych ustawiniach cylindra. Takie same wyniki uzyskano podczas badań w innej lokalizacji o podobnym środowisku geomagnetycznym.
Eksperyment nie został jeszcze powtórzony przez inne zespoły badawcze, które mogłyby sprawdzić, czy zmierzone napięcie nie jest wynikiem zjawiska, którego trzej naukowcy nie wzięli pod uwagę. Autorzy badań stwierdzają, że jeśli uzyskane przez nich wyniki zostaną potwierdzone, warto będzie rozpocząć prace nad zwiększeniem uzyskiwanego napięcia do bardziej użytecznego poziomu.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.