Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Szybkie odcinanie pępowiny nie pomaga ani matce, ani dziecku. Co więcej, może być nawet szkodliwe – ostrzegają brytyjscy lekarze.

Pozostawienie jej na przynajmniej 3 minuty pomaga noworodkowi np. w uzupełnieniu zapasów żelaza, eliminując ryzyko anemii. Z odroczonego zaciskania i odcinania pępowiny skorzystają zwłaszcza wcześniaki (jeśli, oczywiście, nie stwarza to żadnego zagrożenia).

Wczesne odcinanie pępowiny jest szeroko stosowane jako środek zapobiegający nadmiernemu krwawieniu przez matkę bezpośrednio po porodzie.

Dr Andrew Weeks, starszy wykładowca ginekologii na Uniwersytecie w Liverpoolu, utrzymuje, że chociaż wykonanie kilku czynności jest ważne, nie ma dowodów na to, że szybkie zaciskanie pępowiny przynosi matce jakiekolwiek korzyści.

W przypadku dziecka opóźnienie tej procedury pozwala na uzupełnienie zapasów żelaza. W krajach rozwijających się, gdzie anemia stała się poważnym problemem, zaczyna się odchodzić od natychmiastowego odcinania pępowiny. Światowa Organizacja Zdrowia wykreśliła zaś odpowiednie zapisy ze swoich zaleceń.

Dr Weeks podkreśla, że ludziom trudno zarzucić tę praktykę, ponieważ stała się częścią współczesnej kultury. W przypadku zdrowych dzieci zaleca się odczekanie 3 minut, jednak w przypadku wcześniaków lub noworodków, które przyszły na świat w wyniku cesarskiego cięcia (czyli dzieci, które mogłyby najwięcej skorzystać na tej procedurze), sprawa staje się bardziej skomplikowana.

W przeszłości zastanawiano się, czy zwlekanie z odcięciem pępowiny u zdrowego dziecka nie zwiększa ryzyka żółtaczki. Badania amerykańskie wykazały, że tak nie jest.

Pępowina spełnia ważną rolę podczas porodu. Dostarcza dziecku bogatą w tlen krew, zanim nie ustabilizuje się jego własne oddychanie. Wkrótce po porodzie krew przepływająca przez pępowinę stanowi ok. 21% całkowitej objętości krwi malucha, a większość tej transfuzji odbywa się w ciągu kilku pierwszych minut.

Weeks przeanalizował wyniki wielu dotyczących tematu studiów. Konkluzje zamieścił w artykule, który ukazał się w British Medical Journal (BMJ).

Share this post


Link to post
Share on other sites

"Pępowina spełnia ważną rolę podczas porodu. Dostarcza dziecku bogatą w tlen krew, zanim nie ustabilizuje się jego własne oddychanie. Krew pochodząca od matki stanowi ok. 21% całkowitej objętości krwi malucha."

 

Że co?

Myślałem, że krew matki i dziecka są oddzielone od siebie w łożysku i tam zachodzi wymiana tlenem i substancjami odżywczymi... Skąd u dziecka krew matki?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Żelazo jest niezbędne do życia. Bierze udział w fotosyntezie, oddychaniu czy syntezie DNA. Autorzy niedawnych badań stwierdzili, że mogło być tym metalem, który umożliwił powstanie złożonych form życia. Dostępność żelaza jest czynnikiem decydującym, jak bujne życie jest w oceanach. Pył z Sahary nawozi Atlantyk żelazem. Badacze z USA i Wielkiej Brytanii zauważyli właśnie, że im dalej od Afryki, tym nawożenie jest skuteczniejsze.
      Żelazo trafia do ekosystemów wodnych i lądowych z różnych źródeł. Jednym z najważniejszych jest jego transport z wiatrem. Jednak nie zawsze żelazo jest w formie bioaktywnej, czyli takiej, w której może być wykorzystane przez organizmy żywe.
      Autorzy omawianych tutaj badań wykazali, że właściwości żelaza, które wraz z saharyjskim pyłem jest niesione z wiatrami na zachód, zmieniają się w czasie transportu. Im większa odległość, na jaką został zaniesiony pył, tym więcej w nim bioaktywnego żelaza. To wskazuje, że procesy chemiczne zachodzące w atmosferze zmieniają żelazo z forma mniej na bardziej przystępne dla organizmów żywych.
      Doktor Jeremy Owens z Florida State University i jego koledzy zbadali pod kątem dostępności żelaza cztery rdzenie pobrane z dna Atlantyku. Wybrali je ze względu na odległość od tzw. Korytarza Pyłowego Sahara-Sahel. Rozciąga się on pomiędzy Czadem a Mauretanią i jest ważnym źródłem żelaza niesionego przez wiatry na zachód. Pierwszy rdzeń pochodził z odległości 200 km od północno-zachodnich wybrzeży Mauretanii, drugi został pobrany 500 km od wybrzeży, trzeci ze środka Atlantyku, a czwarty to materiał pochodzący z odległości około 500 km na wschód od Florydy. Naukowcy zbadali górne 60–200 metrów rdzeni, gdzie zgromadzone są osady z ostatnich 120 tysięcy lat, czyli z okresu od poprzedniego interglacjału.
      Analizy wykazały, że im dalej od Afryki, tym niższy odsetek żelaza w osadach. To wskazuje, że większa jego część została pobrana przez organizmy żywe w kolumnie wody i żelazo nie trafiło do osadów. Sądzimy, że pył, który dociera do Amazonii czy na Bahamy zawiera żelazo szczególnie przydatne dla organizmów żywych.[...] Nasze badania potwierdzają, że pył zawierający żelazo może mieć duży wpływ na rozwój życia na obszarach znacznie odległych od jego źródła, mówi doktor Timothy Lyons z Uniwersytetu Kalifornijskiego w Riverside.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie organizmy żywe wykorzystują metale w czasie podstawowych funkcji życiowych, od oddychania po transkrypcję DNA. Już najwcześniejsze organizmy jednokomórkowe korzystały z metali, a metale znajdziemy w niemal połowie enzymów. Często są to metale przejściowe. Naukowcy z University of Michigan, California Institute of Technology oraz University of California, Los Angeles, twierdzą, że żelazo było tym metalem przejściowym, który umożliwił powstanie życia.
      Wysunęliśmy radykalną hipotezę – żelazo było pierwszym i jedynym metalem przejściowym wykorzystywanym przez organizmy żywe. Naszym zdaniem życie oparło się na tych metalach, z którymi mogło wchodzić w interakcje. Obfitość żelaza w pierwotnych oceanach sprawiła, że inne metale przejściowe były praktycznie niewidoczne dla życia, mówi Jena Johnson z University of Michigan.
      Johnson połączyła siły z profesor Joan valentine z UCLA i Tedem Presentem z Caltechu. Profesor Valentine od dawna bada, jakie metale wchodziły w skład enzymów u wczesnych form życia, umożliwiając im przeprowadzanie niezbędnych procesów życiowych. Od innych badaczy wielokrotnie słyszała, że przez połowę historii Ziemi oceany były pełne żelaza. W mojej specjalizacji, biochemii i biochemii nieorganicznej, w medycynie i w procesach życiowych, żelazo jest pierwiastkiem śladowym. Gdy oni mi powiedzieli, że kiedyś nie było pierwiastkiem śladowym, dało mi to do myślenia, mówi uczona.
      Naukowcy postanowili więc sprawdzić, jak ta obfitość żelaza w przeszłości mogła wpłynąć na rozwój życia. Ted Present stworzył model, który pozwolił na sprecyzowanie szacunków dotyczących koncentracji różnych metali w ziemskich oceanach w czasach, gdy rozpoczynało się życie. Najbardziej dramatyczną zmianą, jaka zaszła podczas katastrofy tlenowej, nie była zmiana koncentracji innych metali, a gwałtowny spadek koncentracji żelaza rozpuszczonego w wodzie. Nikt dotychczas nie badał dokładnie, jaki miało to wpływ na życie, stwierdza uczona.
      Badacze postanowili więc sprawdzić, jak przed katastrofą tlenową biomolekuły mogły korzystać z metali. Okazało się, że żelazo spełniało właściwie każdą niezbędną rolę. Ich zdaniem zdaniem, ewolucja może korzystać na interakcjach pomiędzy jonami metali a związkami organicznymi tylko wówczas, gdy do interakcji takich dochodzi odpowiednio często. Obliczyli maksymalną koncentrację jonów metali w dawnym oceanie i stwierdzili, że ilość jonów innych biologiczne istotnych metali była o całe rzędy wielkości mniejsza nią ilość jonów żelaza. I o ile interakcje z innymi metalami w pewnych okolicznościach mogły zapewniać ewolucyjne korzyści, to - ich zdaniem - prymitywne organizmy mogły korzystać wyłącznie z Fe(II) w celu zapewnienia sobie niezbędnych funkcji spełnianych przez metale przejściowe.
      Valentine i Johnson chciały sprawdzić, czy żelazo może spełniać w organizmach żywych te funkcje, które obecnie spełniają inne metale. W tym celu przejrzały literaturę specjalistyczną i stwierdziły, że o ile obecnie życie korzysta z innych metali przejściowych, jak cynk, to nie jest to jedyny metal, który może zostać do tych funkcji wykorzystany. Przykład cynku i żelaza jest naprawdę znaczący, gdyż obecnie cynk jest niezbędny do istnienia życia. Pomysł życia bez cynku był dla mnie trudny do przyjęcia do czasu, aż przekopałyśmy się przez literaturę i zdałyśmy sobie sprawę, że gdy nie ma tlenu, który utleniłby Fe(II) do Fe(III) żelazo często lepiej spełnia swoją rolę w enzymach niż cynk, mówi Valentine. Dopiero po katastrofie tlenowej, gdy żelazo zostało utlenione i nie było tak łatwo biologicznie dostępne, życie musiało znaleźć inne metale, które wykorzystało w enzymach.
      Zdaniem badaczy, życie w sytuacji powszechnej dostępności żelaza korzystało wyłącznie z niego, nie pojawiła się potrzeba ewolucji w kierunku korzystania w innych metali. Dopiero katastrofa tlenowa, która dramatycznie ograniczyła ilość dostępnego żelaza, wymusiła ewolucję. Organizmy żywe, by przetrwać, musiały zacząć korzystać z innych metali. Dzięki temu pojawiły się nowe funkcje, które doprowadziły do znanej nam dzisiaj różnorodności organizmów żywych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      John Lowke i Endre Szili z University of Southern Austrlia wyjaśnili, dlaczego błyskawice mają nieregularny zygzakowaty kształt. Z modelu stworzonego przez naukowców wynika, że zygzakowaty kształt błyskawicy powiązany jest z obecnością wysoce wzbudzonych metastabilnych atomów tlenu. Umożliwiają one szybszy przepływ ładunku elektrycznego z chmur do gruntu.
      Powstawanie błyskawicy to proces wieloetapowy. Najpierw pojawiają się liderzy. To wyładowania długości kilkudziesięciu metrów, pochodzące z chmur burzowych. Lider rozpala się na około 1 milisekundę tworząc jeden ze „stopni” błyskawicy i gaśnie. Utworzony przezeń kanał jest przez kilkadziesiąt mikrosekund ciemny, po czym na końcu wygasłego lidera pojawia się kolejny rozbłysk. W ten sposób tworzy się kolejny stopień. Proces ten powtarza się, nadając błyskawicy charakterystyczny kształt. Co interesujące, fragment błyskawicy, który rozbłysł i zgasł, nie rozbłyska ponownie, mimo iż cały czas stanowi część kanału przewodzącego ładunki. Wiele kwestii związanych z powstawaniem błyskawic jest dotychczas nierozwiązanych, a naukowców szczególnie interesuje natura ciemnej kolumny przewodzącej, która łączy liderów z chmurą burzową.
      Lowke i Szili uważają, że zygzakowaty kształt błyskawicy związany jest z obecnością metastabilnego tlenu singletowego delta. Średni czas życia takiego stanu wzbudzonego wynosi około 1 godziny, a molekuły takiego tlenu powodują, że elektrony odłączają się od ujemnie naładowanych jonów tlenu, zwiększając przewodnictwo otaczającego je powietrza. Zdaniem uczonych, czas, który upływa pomiędzy dwoma kolejnymi etapami tworzenia się błyskawicy odpowiada czasowi, jaki potrzebny jest, by na końcówkach liderów doszło do wystarczającej koncentracji metastabilnych molekuł. To zwiększa siłę pola elektrycznego, umożliwiając dalszą jonizację powietrza. Ponadto ta większa koncentracja molekuł utrzymuje się na wcześniejszych etapach, dzięki czemu kanał przewodzący zostaje utrzymany nawet bez pola elektrycznego. Naukowcy mają nadzieję, że ich badania przyczynią się do opracowania bardziej skutecznych metod ochrony infrastruktury przed błyskawicami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińscy naukowcy dali nam kolejny powód, by pozostawiać niezgrabione liście w spokoju. Rośliny do przeprowadzania fotosyntezy potrzebują jonów tlenku żelaza na drugim stopniu utlenienia (Fe2+). Jednak większość żelaza w glebie stanowią jony na trzecim stopniu utlenienia (Fe3+). Uczeni ze Wschodniochińskiego Uniwersytetu Nauki i Technologii w Szanghalu odkryli, że żelazo zawarte w opadłych liściach pomaga uzupełnić te niedobory, zamieniając Fe3+ w Fe2+ za pomocą transferu elektronów.
      Rośliny w sposób naturalny zamieniają Fe3+ w Fe2+ za pomocą reakcji redukcji, w której biorą udział molekuły znajdujące się w korzeniach. Mimo to, nadal mogą cierpieć na niedobory Fe2+. Ma to poważne konsekwencje dla rolnictwa. Przez brak Fe2+ rośliny gorzej przeprowadzają fotosyntezę, dochodzi do zaburzeń w wytwarzaniu chlorofilu (chlorozy) w młodych liściach oraz słabego wzrostu korzeni, co prowadzi do zmniejszenia plonów, mówi Shanshang Liang, jeden z członków zespołu badawczego.
      Stosowane standardowo w rolnictwie nawozy nieorganiczne, jak FeSO4 nie są zbyt wydajne, gdyż dostarczane wraz z nimi jony Fe2+ szybko zmieniają się w Fe3+. Z kolei lepiej spełniające swoją rolę nawozy organiczne, jak chelaty żelaza, są drogie. Można, oczywiście, zmodyfikować rośliny genetycznie tak, by bardziej efektywnie czerpały Fe2+, jednak to wyzwanie zarówno naukowe, ponadto rośliny GMO wciąż budzą kontrowersje. Tymczasem wystarczy pozostawić szczątki roślin, by zapewnić dostarczenie do gleby składników zapewniających rozwój kolejnych pokoleń roślin.
      Chiński zespół już podczas poprzednich badań zauważył, że żelazo zmienia swoją wartościowość podczas biochemicznych reakcji polegających na transferze elektronów. Proces taki zachodzi pomiędzy Fe3+ a pewnymi enzymami w korzeniach roślin. Teraz naukowcy wykorzystali rentgenowską spektrometrię fotoelektronów, spektroskopię fourierowską w podczerwieni oraz spektroskopię UV-VIS do obserwacji zamiany Fe3+ w Fe2+ w liściach herbaty, zimokwiatu wczesnego i innych roślin.
      Nasza praca pozwala zrozumieć, skąd się bierze Fe2+ w glebie oraz w jaki sposób – za pomocą opadłych liści – dochodzi do zamiany Fe3+ w Fe2+. To bardzo wydajny proces, dodaje Shanshang Liang.
      Naukowcy zauważyli też, że wydajność całego procesu oraz równowaga pomiędzy jonami Fe2+ a Fe3+ mogą silnie zależeć od temperatury otoczenia. Dlatego też planują przeprowadzić badania w tym kierunku. Stwierdzili też, że kwasowość gleby ma istotny wpływ na wchłanianie Fe2+ przez rośliny. Jesteśmy też zainteresowani tym, w jaki sposób opadłe liście poprawiają jakość gleby. To może doprowadzić do opracowania nowych strategii produkcji rolnej, stwierdzają naukowcy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie latają w kosmos od kilkudziesięciu lat i od samego początku specjaliści badają skutki zdrowotne pobytu w przestrzeni kosmicznej. Wiemy, że długotrwałe przebywanie w stanie nieważkości prowadzi do osłabienia mięśni i kości, a niedawne badania sugerują, iż uszkadza również mózg. Teraz, dzięki badaniom finansowanym przez Kanadyjską Agencję Kosmiczną, dowiedzieliśmy się też, dlaczego astronauci cierpią na anemię.
      Dotychczas sądzono, że anemia kosmiczna to skutek szybkiej adaptacji organizmu do warunków związanych z przemieszczeniem się płynów do górnej części ciała. W procesie tym astronauci tracą około 10% płynu z naczyń krwionośnych. Sądzono, że w wyniku tego procesu dochodzi do spadku liczby czerwonych krwinek oraz że organizm przystosowuje się do nowej sytuacji w ciągu około 10 dni. Okazało się jednak, że przyczyna jest zupełnie inna.
      Doniesienia o kosmicznej anemii sięgają czasów pierwszych załogowych wypraw w kosmos. Jednak dotychczas nie wiedzieliśmy, co jest przyczyną jej występowania. Nasze badania pokazały, że już w momencie znalezienia się w przestrzeni kosmicznej organizm przyspiesza proces niszczenia czerwonych krwinek i przyspieszone tempo utrzymuje się przez całą misję, mówi główny autor badań, doktor Guy Trudel z University of Ottawa.
      Podczas pobytu na Ziemi nasz organizm tworzy i niszczy około 2 milionów czerwonych krwinek na sekundę. Naukowcy z Ottawy odkryli, że w czasie pobytu w kosmosie niszczonych jest około 3 milionów krwinek na sekundę. Posiadanie mniejszej liczby krwinek nie jest problemem w warunkach nieważkości, jednak gdy wylądujesz na Ziemi, innej planecie czy księżycu, gdzie masz do czynienia z grawitacją, anemia oznacza mniejszą liczbę energii, mniejszą wytrzymałość i siłę. A to może zagrażać powodzeniu misji.
      Kanadyjczycy zaprzęgli do badań 14 astronautów. Mierzyli zawartość tlenku węgla w wydychanym przez nich powietrzu. Jedna molekuła CO powstaje ze zniszczenia jednej molekuły hemu, czerwonego barwnika krwi. Na tej podstawie mogli oszacować tempo niszczenia komórek krwi podczas pobytu człowieka w przestrzeni kosmicznej.
      Uczeni nie badali produkcji czerwonych ciałek w kosmosie, ale przyjęli, że i ona musiała się zwiększyć. Gdyby bowiem tak nie było, każdy astronauta cierpiałby na ciężką anemię. Tymczasem wśród 13 astronautów, którym po powrocie na Ziemię pobrano krew, anemię miało 5. Dalsze badania pokazały, że anemia ta całkowicie ustępuje w ciągu 3-4 miesięcy po powrocie na Ziemię.
      Co ciekawe, gdy zbadano astronautów rok po zakończeniu misji, okazało się, że ich organizmy wciąż niszczą o 30% czerwonych krwinek więcej, niż przed misją. To zaś sugeruje, że w przestrzeni kosmicznej wystąpiły jakieś długotrwałe zmiany kontroli poziomu czerwonych ciałek krwi. Stwierdzono również, że im dłuższy pobyt w kosmosie, tym poważniejsza anemia.
      Badania kanadyjskich naukowców oznaczają, że przy planowaniu długotrwałych misji kosmicznych, z pobytem na Marsie i Księżycu, należy brać pod uwagę kwestię anemii i zastanowić się, jak jej zapobiegać. Można próbować to zrobić na przykład poprzez odpowiednią dietę. Nie wiemy też, jak długo po misji utrzymuje się stan, w którym dochodzi do podwyższonego tempa niszczenia czerwonych krwinek.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...