Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Joniczny wiatr chłodzi układy scalone

Rekomendowane odpowiedzi

Akademicy z Purdue University, którzy prowadzą finansowane przez Intela badania, poinformowali, że wykorzystanie jonicznego wiatru do wymiany ciepła aż o 250% usprawnia chłodzenie układów scalonych. Naukowcy stworzyli prototypowy silnik wiatrowy, dzięki któremu pokonano zjawisko polegające na pozostawaniu nagrzanych molekuł powietrza w pobliżu układu.

Prototyp silnika składa się z dwóch elektrod umieszczonych po obu stronach chipa. Różnica napięcia pomiędzy elektrodami wynosiła tysiąc woltów, co spowodowało, że molekuły powietrza zostały naładowane i powstał joniczny wiatr przesuwający się nad powierzchnią całego układu.

Zwykle dzieje się tak, że powietrze, utrzymując się w naturalny sposób w pobliżu powierzchni układu utrudnia jego chłodzenie. Jeśli udałoby się zintegrować joniczny silnik wiatrowy z chipem, powietrze to można by usunąć, a wydajność obecnie stosowanych układów chłodzących zwiększyłaby się dzięki temu o 250 procent.

Uczeni pracują teraz nad zmniejszeniem napięcia koniecznego do wywołania jonicznego wiatru oraz nad zminiaturyzowaniem samego silnika.

Na potrzeby laboratoryjnych eksperymentów obie elektrody umieszczono w odległości 10 milimetrów od boków układu i podłączono je do napięcia rzędu tysięcy woltów. Podczas testu układ, który tradycyjnymi metodami udało się schłodzić do 60 stopni Celsjusza po włączeniu silnika osiągnął temperaturę 35 stopni.

Obecnie naszym zadaniem jest zmniejszenie odległości pomiędzy obiema elektrodami – mówi profesor Suresh Garimella. Będą znajdowały się one w odległości nie milimetrów a mikronów od układu scalonego.

Uczeni twierdzą, że w ciągu dwóch lat opracują nowy prototypowy silnik, który będzie działał przy znacznie niższych napięciach.

Purdue University od lat prowadzi badania nad technikami jonicznego wiatru. Są one finansowane przede wszystkim przez National Science Foundation.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Niech pracują dalej w tym kierunku ale... ALE SZYBCIEJ BO MI SIE KARTKA GRAFICZNA I PROCESOR GRZEJĄ.... A JA TYMBARDZIEJ....!!!! ;):D:D 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie bedzie jechało.... ozon ma fajny zapach.... I JEST ZDROWY (ale w nie wielkich ilościach)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Unikatowa metoda stymulacji mózgu naśladująca sposób, w jaki tworzymy wspomnienia, wydaje się poprawiać zdolność ludzi do zapamiętywania nowych informacji. Pierwsze eksperymenty sugerują, że ta prototypowa „proteza pamięci” nie tylko pomaga ludziom cierpiącym na zaburzenia negatywnie wpływające na zdolność do zapamiętywania, ale działa u nich bardziej efektywnie, niż u zdrowych. Być może w przyszłości bardziej zaawansowana wersja takiej protezy będzie pomagała osobom, które utraciły pamięć w wyniku urazu czy chorób neurodegeneracyjnych.
      Profesor Sam Deadwyler z Wake Forest Baptist wraz z zespołem od ponad 20 lat pracuje nad technologią naśladowania procesów zachodzących w hipokampie, kluczowej strukturze mózgu, która bierze udział w tworzeniu pamięci krótkotrwałej i przenoszeniu informacji z pamięci krótkotrwałej do długotrwałej. Naukowcy postanowili wykorzystać elektrody wszczepiane do mózgu, by zrozumieć wzorce aktywności elektrycznej pojawiające się podczas zapamiętywania, a następnie wykorzystać te same elektrody do sztucznego stworzenia takich wzorców. Badania prowadzono na zwierzętach oraz na ochotnikach, którzy mieli wszczepione elektrody w ramach leczenia epilepsji.
      Bliski współpracownik profesora Deadwylera, doktor Rob Hampson wraz z kolegami z Wake Forest University School of Medicine przeprowadzili eksperymenty nad praktycznym wykorzystaniem wspomnianych badań. Znaleźli 24 ochotników z elektrodami wszczepionymi z powodu epilepsji. Część z tych osób miała też uszkodzenia mózgu.
      Wolontariusze brali udział w testach pamięci. Każdemu z nich na ekranie komputera pokazano obrazek. Po pewnym czasie widzieli ten sam obrazek, ale w towarzystwie innych. Ich zadaniem było wskazanie, który z obrazków widzieli już wcześniej. Ten test pamięci krótkoterminowej powtórzono 100-150 razy.
      Kolejny test, tym razem pamięci długoterminowej, rozpoczęto 15–90 minut po zakończeniu pierwszego. Tym razem badani widzieli na ekranie 3 obrazki i proszono ich, by wskazali ten, który wydaje im się znajomy.
      Oba testy powtórzono dwukrotnie. Za pierwszym razem, by zarejestrować aktywność elektryczną w hipokampie. Za drugim razem podczas testu elektrody stymulowały mózgi badanych, korzystając z wcześniej zarejestrowanego wzorca. Wzorzec ten był inny w przypadku każdej z osób.
      Naukowcy zauważyli, że proteza pamięci pozwalała na uzyskanie lepszych wyników w teście pamięci. Badani znacznie lepiej zapamiętywali, gdy w czasie testu ich mózgi były stymulowane przez elektrody według wzorca zarejestrowanego w czasie pierwszego testu. Badani uzyskiwali od 11 do 54 procent lepsze wyniki. Największa poprawa zaszła u tych osób, które na początku eksperymentów miały najpoważniejsze problemy z pamięcią.
      Wszystkim uczestnikom eksperymentu elektrody usunięto po tym, jak ich lekarze zakończyli badania związane z dręczącą ich epilepsją. Jednak autorzy protezy pamięci mają nadzieję, że mimo to pacjenci będą odczuwali pozytywne skutki eksperymentu. Teoretycznie bowiem stymulacja elektryczna, jaką otrzymali, może wzmocnić połączenia pomiędzy neuronami w ich hipokampach.
      Być może w przyszłości udoskonalona proteza pamięci będzie szeroko używana, by pomóc ludziom z różnymi zaburzeniami. Pierwszymi kandydatami do tego typu leczenia będą zapewne osoby z urazami mózgu. Pomoc osobom z urazami hipokampu powinna być łatwiejsza niż osobom z chorobami neurodegeneracyjnymi, gdyż te ostatnie zwykle uszkadzają wiele regionów mózgu. Zanim jednak takie urządzenia powstaną, musimy znacznie więcej dowiedzieć się o badaniu mózgu i rozwiązać wiele problemów technicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W mediach pojawiły się informacje, z których wynika, że podczas targów CES 2020 Intel zaprezentuje technologię, która pozwoli na pozbycie się wentylatorów z notebooków. Takie rozwiązanie pozwoliłoby na budowanie lżejszych i cieńszych urządzeń. Podobno na targach mają zostać zaprezentowane gotowe notebooki z technologią Intela.
      Część mediów pisze, że nowatorskie rozwiązanie to połączenie technologii komory parowej (vapor chamber) i grafitu. W technologii komory parowej płynne chłodziwo paruje na gorącej powierzchni, którą ma schłodzić, unosi się do góry, oddaje ciepło i ulega ponownej kondensacji. Rozwiązanie takie od lat stosuje się np. w kartach graficznych, jednak zawsze w połączeniu z wentylatorem, odprowadzającym ciepło z powierzchni, do której jest ono oddawane przez chłodziwo. Podobno Intel był w stanie pozbyć się wentylatora, dzięki poprawieniu o 25–30 procent rozpraszania ciepła.
      Obecnie w notebookach systemy chłodzące umieszcza się pomiędzy klawiaturą a dolną częścią komputera, gdzie znajduje się większość komponentów wytwarzającyh ciepło. Intel miał ponoć zastąpić systemy chłodzące komorą parową, którą połączył z grafitową płachtą umieszczoną za ekranem, co pozwoliło na zwiększenie powierzchni wymiany ciepła.
      Z dotychczasowych doniesień wynika również, że nowy projekt Intela może być stosowany w urządzeniach, które można otworzyć maksymalnie pod kątem 180 stopni, nie znajdzie więc zastosowania w maszynach z obracanym ekranem typu convertible. Podobno jednak niektórzy producenci takich urządzeń donoszą, że wstępnie poradzili sobie z tym problemem i w przyszłości nowa technologia trafi też do laptopów z obracanymi ekranami.
      Niektórzy komentatorzy nie wykluczają, że Intel wykorzystał rozwiązania z technologii k-Core firmy Boyd, która wykorzystuje grafit do chłodzenia elektroniki w przemyśle satelitarnym, lotniczym i wojskowym.
      Obecnie na rynku są dostępne przenośne komputery bez wentylatorów, są to jednak zwykle ultrabooki czy mini laptopy. Pełnowymiarowych maszyn jest jak na lekarstwo i nie  są to rozwiązania o najmocniejszych konfiguracjach sprzętowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA jest o krok bliżej wysłania astronautów na Księżyc. W Stennis Space Center zakończono właśnie ważny test silników Space Launch System. Po czterech latach pracy wszystkie 16 byłych głównych silników promów kosmicznych uzyskało niezbędne zgody do wykorzystania ich w misjach SLS. Te 16 silników pozwoli na przeprowadzenie czterech pierwszych misji.
      Ponadto NASA podpisała z firmą Aerojet Rocketdyne kontrakt na budowę kolejnych silników RS-25 dla SLS. Ponadto seria testów prowadzonych przez ostatnich 51 miesięcy dowiodła, że silniki RS-25 mogą pracować z większą niż dotychczas mocą, wymaganą przy SLS.
      Silniki mają obecnie zezwolenie na wykorzystanie w misji załogowej na Księżyc, która będzie misją przygotowawczą do wyprawy na Marsa, mówi Johnny Heflin, wicedyrektor SLS Liquid Engines Office w Marshall Space Flight Center. Jesteśmy więc w stanie zapewnić moc niezbędną do podróży na Księżyc i dalej.
      Testy RS-25 rozpoczęły się 9 stycznia 2015 roku, kiedy to na 500 sekund uruchomiono wersję rozwojową silnika, oznaczoną kodem 0525. Pierwszą pełną wersję silników dla SLS przetestowano 10 marca 2016 roku. W sumie przeprowadzono 32 testy wersji rozwojowych i pełnych, w czasie których silniki pracowały w sumie przez ponad 4 godziny.
      Warto przypomnieć, że silniki RS-25 są najlepiej sprawdzonymi silnikami rakietowymi na świecie. Wzięły one udział w 135 misjach promów kosmicznych. Gdy program promów został zakończony w 2011 roku NASA dysponowała dodatkowymi 16 silnikami, które zmodyfikowano na potrzeby SLS. Początkowo silniki te wyprodukowano z myślą o dostarczeniu pewnego określonego poziomu mocy, określonego jako 100%. Jeszcze przed zakończeniem programu promów kosmicznych silniki udoskonalono tak, by dostarczały 104,5% mocy. Jednak na potrzeby SLS musiały one zostać ponownie rozbudowane.
      W tym celu NASA musiała opracować nowy kontroler silnika, który monitoruje jego pracę i służy jako interfejs pomiędzy silnikiem a rakietą. Pierwsze testy nowego kontrolera odbyły się w marcu 2017 roku. Wczoraj przetestowano 17. kontroler, zapewniając 16 silnikom RS-25 odpowiedni zapas.
      Po opracowaniu nowego kontrolera NASA musiała udowodnić, że silniki mogą osiągnąć wymaganą moc 111%. Gdy się to udało, konieczne było dalsze wzmocnienie silników tak, by miały one zapas mocy. W lutym 2018 roku silniki uruchomiono na 50 sekund z mocą 113%. Czas ten stopniowo wydłużano podczas kolejnych testów. W końcu w lutym bieżącego roku RS-25 były w stanie pracować z mocą 113% przez 510 sekund.
      Wczoraj przeprowadzono zaś ostateczne testy silnika RS-25 oznaczonego numerem 2062. To właśnie ten silnik zostanie wykorzystany w Exploration Mission-2, w czasie której astronauci polecą w kapsule Orion na orbitę Księżyca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
      Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
      Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
    • przez KopalniaWiedzy.pl
      Inżynierowie z Brown University zaprojektowali urządzenie, które pozwala mierzyć poziom glukozy w ślinie, a nie krwi. W artykule opublikowanym na łamach Nano Letter Amerykanie ujawnili, że w biochipie wykorzystano interferometry plazmoniczne.
      Zaprezentowane rozwiązanie powstało "na styku" dwóch dziedzin: nanotechnologii i plazmoniki, czyli nauki o własnościach i zastosowaniach powierzchniowych fal plazmonowo-polarytonowych. Na biochipie wielkości paznokcia specjaliści z Brown University wytrawili tysiące interferometrów plazmonicznych. Potem mierzyli stężenie glukozy w roztworze przepływającym po urządzeniu. Okazało się, że odpowiednio zaprojektowany biochip wykrywa stężenia glukozy występujące w ludzkiej ślinie. Zazwyczaj poziom cukru w ślinie jest ok. 100-krotnie niższy niż we krwi.
      W ten sposób zweryfikowaliśmy koncepcję, że [bazujące na interakcjach elektronów i fotonów] interferometry plazmoniczne można wykorzystać do wykrywania niewielkich stężeń cząsteczek - podkreśla prof. Domenico Pacifici, dodając, że równie dobrze jak glukoza, mogą to być inne substancje, np. zanieczyszczenia środowiskowe czy wąglik. W dodatku da się je wykrywać wszystkie naraz na tym samym chipie.
      Konstruując czujnik, naukowcy zrobili nacięcie o szerokości ok. 100 nanometrów. Potem z obu jego stron wycięli rowki o grubości 200 nanometrów. Wycięcie wychwytuje zbliżające się fotony, a rowki je rozpraszają, przez co dochodzi do interakcji z wolnymi elektronami, odbijającymi się od metalowej powierzchni chipa. Interakcje wolne elektrony-fotony prowadzą do powstania plazmonów powierzchniowych - tworzy się fala o długości mniejszej od fotonu w wolnej przestrzeni (free space). Dwie fale przemieszczają się wzdłuż powierzchni chipa, aż napotkają fotony w nacięciu. Zachodzi interferencja, a obecność mierzonej substancji (tutaj glukozy) na czujniku prowadzi do zmiany względnej różnicy faz, co z kolei powoduje mierzone w czasie rzeczywistym zmiany w intensywności światła transmitowanego przez środkowe wycięcie. Środkowe nacięcie działa jak mikser [...] dla fal plazmonów powierzchniowych i światła.
      Akademicy nauczyli się, że mogą manipulować przesunięciem fazy, zmieniając odległości między wycięciem a rowkami po bokach. W ten sposób można wykalibrować interferometr wykrywający bardzo niskie stężenia glukozy rzędu 0,36 mg na decylitr.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...