Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Gdy wystawione na oddziaływanie słońca polimery rozkładają się w środowisku, dochodzi do uwolnienia gazów cieplarnianych: metanu i etylenu.

Naukowcy z Uniwersytetu Hawajskiego w Mānoa analizowali poliwęglany, poliakrylany, polipropylen, poli(tereftalan etylenu), polistyren, a także polietyleny dużej i małej gęstości (HDPE i LDPE).

Wykorzystywany w reklamówkach polietylen jest produkowanym w największych ilościach i najczęściej wyrzucanym syntetycznym polimerem na świecie. Trudno się więc dziwić, że to on okazał się najbardziej "produktywnym" emitentem obu gazów cieplarnianych.

Wskaźnik emisji gazów z granulatu surowego LDPE wzrósł w czasie 212-dniowego eksperymentu. Znalezione w oceanie drobiny LDPE także emitowały gazy cieplarniane pod wpływem ekspozycji na światło słoneczne. Co więcej, raz wystawione na oddziaływanie promieniowania, uwalniały gazy cieplarniane również w ciemności.

Rosnącą w czasie emisję gazów cieplarnianych z granulatu przypisujemy fotodegradacji plastiku oraz powstaniu naznaczonej pęknięciami i zagłębieniami warstwy powierzchniowej. Z czasem defekty te zwiększają powierzchnię dostępną dla dalszego fotochemicznego rozkładu, przez co rośnie także tempo produkcji gazów - wyjaśnia dr Sarah-Jeanne Royer.

Produkcję metanu i etylenu może też przyspieszać powstanie mikroplastiku.

Prof. David Karl dodaje, że źródło gazów w postaci plastiku nie jest uwzględniane przy ocenie globalnych cykli metanu i etylenu, a może ono mieć znaczący wpływ.

Jeśli weźmie się pod uwagę ilość plastiku pływającego w morzach i oceanach oraz ilość polimerów stykających się z warunkami zewnętrznymi, na podstawie uzyskanych wyników po raz kolejny dojdziemy do wniosku, że przede wszystkim musimy ograniczyć produkcję plastików, zwłaszcza tych jednorazowych - podsumowuje Royer.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Komórki wytwarzają wiele różnych związków i kompleksów, które mogą zajmować aż do 40% jej wnętrza. Z tego powodu wnętrze komórki jest niezwykle zatłoczonym środowiskiem, w którym charakteryzacja reakcji biochemicznych jest skomplikowana i złożona, pomimo ogromnego postępu nauki. Dlatego naukowcy zazwyczaj używają obojętnych chemicznie molekuł takich jak niejonowe polimery, aby naśladować naturę w probówce i poza komórką tworzyć zatłoczenie odpowiadającemu temu w naturze.
      Jak się jednak okazuje te powszechnie uważane za obojętne dla reakcji biochemicznych związki mogą kompleksować jony. A ponieważ równowaga wielu reakcji biochemicznych zależnych jest od stężenia jonów, jest to szczególnie istotne. Ostatnio, badacze z Instytutu Chemii Fizycznej Polskiej Akademii Nauk z grupy prof. Roberta Hołysta przedstawili badania przybliżające nas do zrozumienia 1000-krotnych zmian w stałych równowagi tworzenia się kompleksu biochemicznego, gdy zachodzi ona w bardzo zatłoczonym środowisku. Przyjrzyjmy się ich badaniom.
      Nasze ciało składa się z trylionów komórek bezustannie współpracujących ze sobą i pełniącymi różne funkcje. Co więcej, nasz organizm w każdej sekundzie wykonuje miliardy zawiłych operacji, a my nawet ich nie zauważamy. Reakcje przebiegające we wnętrzu pojedynczej komórki, a zwłaszcza specyficzne interakcje między indywidualnymi cząsteczkami bardzo często zależą od stężenia jonów w danym miejscu. Wiele reakcji jest szczególnie wrażliwych na zmiany siły jonowej, dlatego równowaga tworzenia się wielu kompleksów biochemicznych (np. kompleksów białko-białko, białko-RNA czy tworzenie się podwójnej nici DNA) może się istotnie zmieniać w zależności od dostępności jonów.
      Sprawę ponad to komplikuje fakt, złożona budowa komórek ludzkich. Przyjrzyjmy się bliżej cytoplazmie wewnątrz komórki. Można ją porównać do basenu pełnego pływających w nim obiektów o różnych rozmiarach i kształtach takie jak rybosomy, małe cząsteczki, białka lub kompleksy białko-RNA, nitkowate składniki cytoszkieletu, i organelle np. mitochondria, lizosomy, jądro itd. Wszystko to sprawia, że lepka, galaretowata struktura cytoplazmy jest bardzo złożonym i zatłoczonym środowiskiem. W takich warunkach każdy parametr, a w szczególności siła jonowa i pH może znacząco wpłynąć na przebieg reakcji biochemicznych. Jednym z mechanizmów utrzymywania równowagi jonowej w komórce są pompy sodowo-potasowe znajdujące się w błonie komórkowej prawie każdej ludzkiej komórki, które to są wspólną cechą dla całego życia komórkowego.
      Wspomniane zatłoczone środowisko jest często odtwarzane sztucznie, aby zrozumieć reakcje biochemiczne zachodzące wewnątrz żywych komórek. Jako modelu cytoplazmy komórki in vitro zazwyczaj używa się roztworów związków niejonowych w dużych stężeniach (∼40–50% masowego). Najczęstszymi molekułami wykorzystywanymi w tym celu są polietylen, glikol etylenowy, glicerol, fikol, oraz dekstrany. Powyższe cząsteczki uważane są powszechnie za chemicznie nieaktywne.
      Zaskakujące wyniki w tej dziedzinie zaprezentowali naukowcy z Instytutu Chemii Fizycznej PAN. Wykorzystali oni hybrydyzację oligonukleotydów DNA jako modelową, bardzo wrażliwą na stężenie jonów, reakcję biochemiczną. Stabilność tworzenia kompleksu badano w obecności różnych związków chemicznych zwiększających zatłoczenie w środowisku prowadzonych reakcji oraz w funkcji siły jonowej.
      Stężenie jonów w roztworze opisywane jest siłą jonową, która określa efektywną odległość elektrostatycznego odpychania między poszczególnymi cząsteczkami. Dlatego też sprawdziliśmy wpływ siły jonowej na hybrydyzację DNA – zauważa Krzysztof Bielec, pierwszy autor artykułu opisującego odkrycie grupy badawczej.
      Przeprowadzone eksperymenty wykazały, że interakcje między cząsteczkami są wzmacniane przy wyższym stężeniu soli oraz że dodatek polimerów zwiększających zatłoczenie i tym samym lepkość środowiska reakcyjnego także wpływa na dynamikę procesów biochemicznych utrudniając tworzenie kompleksów.
      Krzysztof Bielec komentuje: Najpierw sprawdziliśmy wpływ zatłoczenia w środowisku reakcyjnym na stałą równowagi hybrydyzacji DNA. Tworzenie dwuniciowego szkieletu DNA bazuje na oddziaływaniu elektrostatycznym między dwiema ujemnie naładowanymi nićmi. Monitorowaliśmy wpływ zatłoczonego środowiska na hybrydyzację komplementarnych nici o stężeniu nanomolowym charakterystycznym dla wielu reakcji biochemicznych w komórce. Następnie określiliśmy kompleksowanie jonów sodu w zależności od zatłoczenia. Miejsce wiązania kationu w strukturze związku zwiększającego lepkość może różnić się nawet pomiędzy cząsteczkami zawierającymi te same grupy funkcyjne. Dlatego obliczyliśmy oddziaływanie z poszczególnymi cząsteczkami w przeliczeniu na monomer i polimer upraszczając interakcje między jonami a cząsteczkami typu przeszkoda zwiększająca lepkość.
      Ku zaskoczeniu badaczy, okazało się, że powszechnie uważane za niereaktywne niejonowe polimery używane do naśladowania warunków panujących w cytoplazmie mogą kompleksować (niejako podkradać) jony niezbędne do efektywnej hybrydyzacji DNA.
      Pomimo, że nie jest to dominująca interakcja pomiędzy tymi polimerami a jonami to, gdy stosuje się ogromne stężenie polimerów (kilkadziesiąt procent masy roztworu) efekt jest znaczący.
      Określając stabilność kompleksów powstających w obecności konkretnych związków zwiększających zatłoczenie w badanym środowisku reakcyjnym autorzy badania wykazali wpływ jonów na poziomie molekularnym zbliżając nas do lepszego naśladowania warunków panujących w naturze.
      Wyniki tych eksperymentów rzucają światło na wyjaśnianie zjawisk otrzymywane dotychczas za pomocą wspomnianych systemów polimerowych oraz skłaniają do rewizji mechanizmów zachodzących w komórce, jeśli badane były środowiskach otrzymywanych sztucznie.
      Dzięki wynikom przedstawionym przez naukowców z IChF PAN jesteśmy o krok bliżej zrozumienia poszczególnych procesów molekularnych zachodzących wewnątrz komórek. Szczegółowy opis jest niezwykle ważny w wielu dziedzinach jak na przykład przy projektowaniu nowych leków, zwłaszcza w przewidywaniu konkretnych procesów zachodzących w komórkach podczas leczenia. Może być również pomocny w precyzyjnym planowaniu eksperymentów in vitro. Praca badaczy z IChF PAN została opublikowana w The Journal of Physical Chemistry Letters

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Emisja gazów cieplarnianych prowadzi do kurczenia się stratosfery, informują naukowcy z Czech, Austrii, Hiszpanii, USA, Niemczech i Austrii. Stratosfera rozciąga się na wysokości 20–60 kilometrów nad powierzchnią Ziemi, ponad troposferą. Wcześniejsze badania wykazały rozszerzanie się troposfery, co wskazywało na możliwość kurczenia się stratosfery. Teraz potwierdzono istnienie takiego zjawiska oraz zbadano, jak bardzo stratosfera się skurczyła.
      W wyniku emisji gazów cieplarnianych i rosnącej temperatury troposfera staje się coraz grubsza. Rośnie więc ciśnienie, jakie od spodu wywiera na stratosferę. Dlatego też międzynarodowy zespół naukowcy postanowił bliżej przyjrzeć się wpływowi emisji gazów cieplarnianych na stratosferę.
      Uczeni przyjrzeli się danym satelitarnym od lat 80. ubiegłego wieku i dodali je do modelu komputerowego, który między innymi bierze pod uwagę reakcje chemiczne zachodzące w atmosferze. Zbadali też wpływ całości na warstwę ozonową.
      Z badań wynika, że rozszerzająca się troposfera zwiększa nacisk na stratosferę. Dodatkowym czynnikiem powodującym kurczenie się stratosfery jest dwutlenek węgla, który się do niej przedostaje. W stratosferze ma on odwrotne działania do działania w troposferze. Działa na stratosferę chłodząco, przez co dodatkowo się ona kurczy.
      W wyniku tych zjawisk od lat 80. stratosfera skurczyła się o około 400 metrów, straciła więc około 1% grubości. Naukowcy uruchomili też swój model, by zbadał on przyszły rozwój sytuacji. Wynika z niego, że w ciągu najbliższych 60 lat stratosfera najprawdopodobniej straci około 1 kilometra grubości. Okazało się też, że zmiany w warstwie ozonowej mają niewielki wpływ na grubość atmosfery.
      Autorzy badań podkreślają, że nie wiedzą, jaki wpływ na Ziemię będzie miało kurczenie się stratosfery. Przypuszczają, że może to wpłynąć na trajektorie satelitów i sposób rozchodzenia się fal radiowych, co z kolei może mieć wpływ na GPS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN udostępnił swój pierwszy publiczny Raport Środowiskowy, dotyczący m.in. emisji gazów cieplarnianych. Dowiadujemy się z niego, że w 2018 roku ta instytucja wyemitowała 223 800 ton ekwiwalentu dwutlenku węgla. To tyle co duży statek wycieczkowy.
      Z raportu dowiadujemy się, że aż 3/4 tej emisji powodują zawierające fluor gazy, używane podczas prac z wykrywaczami cząstek. CERN planuje zmniejszenie emisji.
      Obejmujący lata 2017–2018 raport sprowokował debatę zarówno wśród pracowników, jak i wśród osób z zewnątrz. Zaczęliśmy zastanawiać się, co można zrobić z tym już teraz i w jaki sposób projektować akceleratory przyszłości, mówi Frederick Bordry, dyrektor CERN ds. akceleratorów i technologii.
      Raport porusza wszelkie kwestie związane z wpływem CERN na środowisko, od emitowanego hałasu, po wpływ na bioróżnorodność, zużycie wody czy emitowane promieniowanie. Specjaliści orzekli, że to redukcja gazów cieplarnianych będzie miała największy wpływ na poprawę stanu środowiska. Inżynierowie już planują uszczelnienie miejsc wycieków w LHC i zoptymalizowanie systemu cyrkulacji gazu. Docelowo chcą, żeby w roli chłodziwa czujników gazy zawierające fluor zostały zastąpione przez dwutlenek węgla, który ma kilka tysięcy razy mniejszy potencjał cieplarniany. Gdy budowaliśmy Wielki Zderzacz Hadronów, nie docenialiśmy potencjału cieplarnianego tych gazów. Naszym głównym zmartwieniem była dziura ozonowa, mówi Bordry. Na razie CERN chce obniżyć swoją bezpośrednią emisję gazów cieplarnianych o 28% do roku 2024.
      Raport uwzględnia też pośrednią emisję generowaną przez CERN. Laboratorium zużywa bowiem tyle energii elektrycznej co niewielkie miasteczko. Zakładamy w LHC systemy odzyskiwania energii. Jesteśmy pionierami wykorzystania nadprzewodnictwa na duża skalę, co może zwiększyć efektywność sieci energetycznych.
      Jak jednak zauważają specjaliści, znacznie lepiej jest emitować gazy cieplarniane w celu dokonywania odkryć naukowych, niż w innych celach. Postęp naukowy jest bardzo ważny i trudno znaleźć ważniejszą instytucję naukową niż CERN. Osobiście wolę, byśmy emitowali gazy cieplarniane pracując w CERN niż lecąc samolotem do Pragi, by się upić na weekend, mówi John Barrett, z Sustainability Research Institute.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Klimaty typu śródziemnomorskiego są niezwykle wrażliwe na obecność gazów cieplarnianych. Okazuje się, że gdy w atmosferze pojawia się więcej takich gazów, natychmiast zmniejsza się poziom opadów w klimacie śródziemnomorskim. Na szczęście mechanizm ten działa też w drugą stronę i spadek poziomu opadów zostaje natychmiast zatrzymany, jeśli obniżeniu ulega emisja gazów cieplarnianych.
      Takie wnioski płyną z badań przeprowadzonych przez naukowców z University of Reading, Imperial College London i Instytutu badan nad atmosferą i klimatem włoskiej Narodowej Rady Badań Naukowych (Consiglio Nazionale delle Ricerche). Specjaliści z tych instytucji opisali nieznany dotychczas wpływ zmian klimatycznych na takie regiony jak Kalifornia, centralne Chile i basen Morza Śródziemnego.
      Dotychczasowe modele klimatyczne i badania obserwacyjne sugerowały, że w miarę ocieplania się klimatu w regionach o klimacie śródziemnomorskim – z wyjątkiem Kalifornii – będzie dochodziło do spadku ilości opadów. Klimat śródziemnomorski, z jego gorącymi suchymi latami jest bardzo wrażliwy na zmiany poziomu opadów w zimie. Dlatego też często uważa je się za wskaźniki zmian klimatycznych.
      Dotychczas nie wiadomo było jednak, jak zmiany w koncentracji gazów cieplarnianych wpływają na klimat śródziemnomorski. Emisja gazów cieplarnianych natychmiast wpływa na klimat, jednak staje się to widoczne po wielu dziesięcioleciach, mówi główny autor badań, doktor Giuseppe Zappa. Wiemy też, że gromadzące się w górnych warstwach atmosfery gazy mogą wpływać na klimat lokalny albo bardzo szybko, zaledwie w ciągu lat, albo powoli, przez dziesięciolecia.
      Naukowcy, którzy do swoich badań nad klimatem śródziemnomorskim wykorzystali modele komputerowe, zauważyli, że w środkowym Chile i w basenie Morza Śródziemnego w ciągu zaledwie kilku lat dochodzi do spadku opadów w reakcji na zwiększoną emisję gazów cieplarnianych. To zaś, jak zauważył doktor Paulo Ceppi z Imperial College London, sugeruje, że stabilizacja koncentracji gazów cieplarnianych przyniesie natychmiastową korzyść zasobom wodnym w tych regionach, gdyż zatrzyma spadek opadów. Innymi słowy, podjęcie działań w tym kierunku da pozytywne efekty w ciągu zaledwie kilku lat.
      Podobnego zjawiska nie zaobserwowano jednak w Kalifornii. Tam zwiększenie koncentracji gazów cieplarnianych nie prowadzi do tak drastycznego spadku poziomu opadów. Naukowcy mówią, że różnica ta spowodowana jest przez ocean. Powierzchnia oceanu nie ogrzewa się równomiernie. Jedne regiony ogrzewają się szybciej niż inne. A wzorzec ogrzewania się oceanu wpływa na rozkład wiatrów i opadów. Te obszary oceanu, które ogrzewają się szybciej niż średnia, wywołują takie zmiany w rozkładzie wiatrów, które prowadzą do wysychania basenu Morza Śródziemnego. Z kolei inne obszary, które ocieplają się wolniej, wpływają na masy powietrza nad Kalifornią, powodując, że stan ten staje się bardziej wilgotny. Jednak obszary te mają niewielki wpływ na opady w innych klimatach śródziemnomorskich, wyjaśnia doktor Ceppi.
      Szczegóły badań opublikowano na łamach PNAS w artykule pt.: Time-evolving sea surface warming patterns modulate the climate change response of subtropical precipitation over land.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy w lutym 2018 roku doszło do eksplozji i wycieku gazu w jednym z odwiertów w stanie Ohio, media zbytnio się tym nie interesowały. Opracowane właśnie dane pokazują, że wyciek był znacznie poważniejszy niż się wydawało, a przypadek ten każe przemyśleć poglądy dotyczące wpływu naturalnego gazu na emisję CO2 do atmosfery.
      W ostatnim czasie emisja z węgla spada, a z gazu naturalnego rośnie. Gaz może stać się paliwem przejściowym pomiędzy epoką węgla a technologiami odnawialnymi. By jednak dobrze ocenić wpływ tego typu zmiany na ziemski klimat potrzebujemy dokładnych danych dotyczących emisji. A te, jak się okazuje, mogą być zaniżone.
      Sudhanshu Pandej z Holenderskiego Instytutu Badań Kosmicznych uzyskał i opracował dane z satelity Sentinel-5P. Niestety, mimo że wyciek w Ohio trwał przez 20 dni to dobrej jakości dane mamy tylko z 2 dni. Przez większość czasu nad badanym obszarem zaległy bowiem chmury.
      Holenderscy naukowcy ocenili, że z uszkodzonej instalacji wydobywało się 120 ton metanu na godzinę. To więcej niż w normalnych warunkach wydobywa się z całych wielkich pól wydobywczych. Naukowcy uśrednili swoje dane i na ich podstawie wyliczyli emisję dla całego 20-dniowego okresu. Zastrzegają przy tym, że obliczenia są najprawdopodobniej zaniżone, gdyż te dni, dla których udało się dokonać pomiarów, wystąpiły po 2 tygodniach od awarii. W tym czasie ciśnienie w złożu zdążyło się obniżyć, więc emisja była już niższa niż na początku.
      Tak czy inaczej podczas awarii do atmosfery przedostało się 60 000 (± 15 000) ton gazu. To więcej niż wynosi roczna emisja z przetwórstwa ropy i gazu w większości krajów europejskich, z wyjątkiem Niemiec, Włoch i Wielkiej Brytanii.
      Warto tutaj przypomnieć, że w 2015 roku w Kalifornii doszło do trwającego 3,5-miesiąca wycieku gazu z podziemnego magazynu. Wówczas wyciekło 97 000 ton i był to drugi największy tego typu wypadek w USA.
      To pokazuje, że wycieki metanu związane z wydobyciem i przetwórstwem ropy naftowej oraz gazu są zdominowane przez niewielką liczbę dużych awarii. To utrudnia zarówno ocenę rzeczywistego wpływu przemysłu gazowego na atmosferę, jak i porównanie tego wpływu z przemysłem węglowym.
      Być może uda się ten problem rozwiązać za pomocą satelitów. Te bowiem mogą bez przerwy obserwować wielkie obszary globu i w sposób ciągły monitorować emisję metanu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...