Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przewód i nanocząstki – sposób na wczesne wykrycie nowotworu z krwi

Recommended Posts

Naukowcy ze Stanford University wykorzystali namagnetyzowany przewód do przechwycenia komórek nowotworowych swobodnie poruszających się w krwi chorego. Technika ta może wkrótce posłużyć do wczesnej diagnozy nowotworów.

Najpierw do układu krwionośnego wprowadza się namagnetyzowane nanocząstki, które przygotowano tak, by przyczepiały się do komórek nowotworowych. Po wprowadzeniu do żyły przewód wyłapuje te nanocząstki z przyczepionymi doń komórkami.

Technika, którą przetestowano dotychczas na świniach, pozwala na wychwycenia od 10 do 80 razy więcej komórek nowotworowych niż inne techniki wykrywania nowotworów we krwi. To czyni ją potencjalnie bardzo użytecznym narzędziem do wczesnej diagnostyki. Może być ona wykorzystana również do oceny skuteczności terapii antynowotworowej. Jeśli terapia taka będzie skuteczna, we krwi powinno pojawić się więcej komórek, co jest spowodowane obumieraniem guza i odrywaniem się od niego komórek, następnie, po skurczeniu się guza, liczba komórek we krwi powinna się zmniejszyć.

Naukowcy skupiają się na wykorzystaniu przewodu w nowotworach, jednak przyznają, że może on mieć znacznie szersze zastosowanie. Można go użyć w każdej innej chorobie, w przebiegu której we krwi pojawiają się charakterystyczne dla niej molekuły czy komórki. Wyobraźmy sobie, że badamy pacjenta pod kątem infekcji bakteryjnej, krążącego resztkowego DNA nowotworowego czy komórek odpowiedzialnych za stany zapalne. W każdym z tych przypadków przewód oraz nanocząstki pomogą wzmocnić sygnał i tym samym wykryć chorobę, mówi profesor Sanjiv Gambhir, główny autor badań.

Nowa technika wykrywania komórek nowotworowych we krwi może okazać się bardzo użytecznym narzędziem. Teoretycznie do wykrycia nieprawidłowych komórek wystarczyłoby pobranie krwi i jej zbadanie pod mikroskopem. Problem jednak w tym, że w wielu przypadkach we krwi znajduje się bardzo mało komórek nowotworowych, pobierając więc krew możemy nie pobrać żadnej z nich. Przewód i namagnetyzowane nanocząstki powinny poradzić sobie z tym problemem. Niewielki przewód można umieścić w ciele pacjenta na dłuższy czas, co znakomicie zwiększa szansę, że przyczepią się do niego nanocząstki z dołączonymi do nich komórkami.

Naukowcy nie starali się jeszcze o zgodę na przeprowadzenie testów swojej technologii na ludziach. Podczas badań na świniach przewód był wprowadzany do żyły w pobliżu ucha świni. Żyła ta jest podobna do żyły na ludzkim ramieniu. I to właśnie tam naukowcy mają zamiar umieszczać swój przewód.

Wstępne wyniki badań są bardzo obiecujące. Wykazały one bowiem, że przewód, w porównaniu do 5-mililitrowej próbki krwi pobranej za pomocą strzykawki, przyciąga nawet 80-krotnie więcej komórek nowotworowych. Jego maksymalna skuteczność jest więc taka, jak skuteczność pobrania i przebadania 80 próbek krwi. A wszystko to w zaledwie 20 minut.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Radioterapia to jedna z najczęściej stosowanych metod leczenia nowotworów. Wykorzystuje się wówczas cząstki lub fale o wysokich energiach, które niszczą lub uszkadzają komórki nowotworowe. Niestety istnieją nowotwory, które potrafią zyskać oporność na radioterapię, a w niektórych przypadkach zastosowanie tej metody powoduje nawet, że nowotwór staje się bardziej inwazyjny, pogarszając prognozy pacjenta.
      Naukowcy z Global Center for Biomedical Science and Engineering, założonego przez Hokkaido University i Uniwersytet Stanforda, odkryli mechanizm powodujący, że molekuły Arl8B i BORC zwiększają agresywność nowotworów po radioterapii.
      Wykazaliśmy, że zwiększona zdolność do przerzutowania wśród komórek nowotworowych, które przetrwały radioterapię, jest związana ze zmianami w procesie egzocytozy do lizosomów. Zmiany te wywoływane są zwiększoną aktywacją Arl8b. To GTPaza regulująca transport w lizosomach, stwierdzili naukowcy. Odkryli też, że knockdown Arl8b lub podjednostek BORC zlokalizowanych na powierzchni błony lizosomalnej, zmniejsza egzocytozę i inwazyjność komórek nowotworowych.
      W ostatnim czasie pojawia się coraz więcej badań wskazujących na rolę lizosomów w biologii guzów nowotworowych. Teraz uczeni potwierdzili, że po radioterapii dochodzi do zwiększonego wydzielania enzymów z lizosomów, co z kolei prowadzi do degradacji materiału łączącego komórki guza, przez co uwalniają się one i wywołują przerzuty. Głównym winowajcą zwiększonego przerzutowania jest tutaj Arl8b.
      Powyższe badania sugerują, że lizosomy mogą stać się atrakcyjnym celem nowych terapii przeciwnowotworowych.
      Praca Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiationzostała opublikowana na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Gladstone Institutes we współpracy z badaczami z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) i Uniwersytetu Technicznego w Monachium (TUM) stworzyli mapę genetyczną, dzięki której są w stanie odróżnić regulatorowe limfocyty T od pozostałych limfocytów T. Odkrycie to pozwoli na stworzenie terapii, które pozwolą na wzmacnianie lub osłabianie działania regulatorowych limfocytów T.
      Odkrycie sieci powiązań genetycznych, które kontrolują biologię regulatorowych limfocytów T to pierwszy krok w kierunku znalezienia leków zmieniających funkcję tych komórek, co pomoże w terapii nowotworów i chorób autoimmunologicznych, mówi doktor Alex Marson, dyrektor Gladstone-UCSF Institute of Genomic Immunology. Ludzkie regulatorowe limfocyty T (Treg) są niezbędnym składnikiem homeostazy immunologicznej. [...] zidentyfikkowaliśmy czynniki transkrypcyjne, które regulują krytyczne proteiny Treg zarówno w warunkach bazowych, jak i prozapalnych, stwierdzają naukowcy.
      Dotychczasowe badania na myszach wskazują, że zwiększenie liczby regulatorowych limfocytów, T, a tym samym wytłumienie układu odpornościowego, pomaga zwalczać objawy chorób autoimmunologicznych. Z drugiej zaś strony, zablokowanie Treg, a tym samym zwiększenie aktywności układu odpornościowego, może pomagać w skuteczniejszej walce z nowotworami.
      Obecnie testowane są na ludziach terapie polegające na zwiększeniu liczby Treg. Polegają one na pobieraniu od pacjentów tych komórek, namnażaniu ich i ponownych wstrzykiwaniu. Dotychczas jednak w takich terapiach nie zmienia się samego działania komórek.
      Większość naszej wiedzy o Treg pochodzi z modeli mysich. Chcieliśmy zidentyfikować geny związane z działaniem Treg, by lepiej zrozumieć, jak wszystko jest ze sobą połączone i móc manipulować działaniem tych komórek. Gdy już rozumiemy funkcje każdego z genów możemy precyzyjnie edytować komórki i zwalczać choroby, wyjaśnia profesor Kathrin Schumann z Monachium.
      Podczas swoich najnowszych badań naukowcy selektywnie usuwali jeden z 40 czynników transkrypcyjnych, by zmienić działanie Treg. Wybrali te właśnie czynniki, gdyż wcześniejsze badania wskazywały, że mogą one odgrywać specyficzne funkcje w działaniu Treg w odróżnieniu od innych limfocytów T. Następnie skupili się na 10 czynnikach, które wywierały największy wpływ na funkcjonowanie regulatorowych limfocytów T. Za każdym razem przyglądali się tysiącom genów, by sprawdzić, jak zmieniło się ich działanie w wyniku manipulacji czynnikiem transkrypcyjnym. W ten sposób przebadali aż 54 424 indywidualne komórki Treg.
      Dzięki tak szczegółowej analizie byli w stanie stworzyć rozległą mapę powiązań genetycznych i czynników transkrypcyjnych, które wpływały na pracę Treg. Jednym z najbardziej zaskakujących odkryć było spostrzeżenie, że słabo poznany czynnik HIVEP2 bardzo silnie oddziałuje na funkcjonowanie Treg. Po przeprowadzeniu badań na myszach naukowcy zauważyli, że usunięcie genu HIVEP2 obniżyło zdolność Treg do zwalczania stanu zapalnego. To ważne odkrycie. Wcześniej tak naprawdę nigdy nie rozważano roli HIVEP2 w biologii Treg, mówi Sid Raju z MIT i Harvarda.
      Naukowcy mówią, że ich badania pokazują też, jak potężnymi narzędziami badawczymi obecnie dysponujemy. Teoretycznie możemy wziąć dowolną komórkę ludzkie organizmu, wybiórczo usuwać z niej pojedyncze geny i badać wpływ takich działań na funkcjonowanie tej komórki. To naprawdę otwiera drogę do traktowania ludzkich komórek jako eksperymentalnego systemu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bez cienia wątpliwości wykazaliśmy, że w żywych komórkach powstają poczwórne helisy DNA. To każe nam przemyśleć biologię DNA, mówi Marco Di Antonio z Imperial College London (CL). Naukowcy po raz pierwszy w historii znaleźli poczwórne helisy DNA w zdrowych komórkach ludzkiego organizmu. Dotychczas takie struktury znajdowano jedynie w niektórych komórkach nowotworowych. Udawało się je też uzyskać podczas eksperymentów w laboratorium.
      Teraz okazuje się, że poczwórna helisa DNA może występować też w żywych, zdrowych komórkach ludzkiego ciała. Dotychczas struktury takiej, zwanej G-kwadrupleks (G4-DNA), nie zauważono w żywych komórkach, gdyż technika ich wykrywania wymagała zabicia badanej komórki. Teraz naukowcy z Uniwersytetu w Cambridge, ICL oraz Uniwersytetu w Leeds opracowali nowy znacznik fluorescencyjny, który przyczepia się go G4-DNA w żywych komórkach. To zaś pozwala na śledzenie formowania się tej struktury i badania roli, jaką odgrywa ona w komórce.
      Odkrycie poczwórnej helisy w komórkach, możliwość prześledzenia jej roli i ewolucji otwiera nowe pole badań nad postawami biologii i może przydać się w opracowaniu metod leczenia wielu chorób, w tym nowotworów.
      Teraz możemy obserwować G4 w czasie rzeczywistym w komórkach, możemy badać jej rolę biologiczną. Wiemy, że struktura ta wydaje się bardziej rozpowszechniona w komórkach nowotworowych. Możemy więc sprawdzić, jaką odgrywa ona rolę, spróbować ją zablokować, co potencjalnie może doprowadzić do pojawienia się nowych terapii, stwierdzają autorzy najnowszych badań.
      Naukowcy sądzą, że do formowania się kwadrupleksu dochodzi po to, by czasowo otworzyć helisę, co ułatwia różne procesy, jak np. transkrypcja.
      Wydaje się, że G4 jest częściej powiązana z genami biorącymi udział w pojawianiu się nowotworów. Jeśli struktura ta ma związek z chorobami nowotworowymi, to być może uda się opracować leki blokujące jej formowanie się.
      Już wcześniej ten sam zespół naukowcy wykorzystywał przeciwciała i molekuły, które były w stanie odnaleźć i przyczepić się do G4. Problem jednak w tym, że środki te musiały być używane w bardzo wysokich stężeniach, co groziło zniszczeniem DNA. To zaś mogło prowadzić do formowania się G4, zatem technika, której celem było wykrywanie G4 mogła de facto powodować jego tworzenie się, zamiast znajdować to, co powstało w sposób naturalny.
      Czasem naukowcy potrzebują specjalnych próbników, by obserwować molekuły wewnątrz żywych komórek. Problem w tym, że próbniki te mogą wchodzić w interakcje z obserwowanym obiektem. Dzięki mikroskopii jednocząsteczkowej jesteśmy w stanie obserwować próbniki w 1000-krotnie mniejszym stężeniu niż wcześniej. W tym przypadku próbnik przyczepia się do G4 w ciągu milisekund, nie wpływa na jej stabilność, co pozwala na badanie zachowania G4 w naturalnym środowisku bez wpływu czynników zewnętrznych.
      Dotychczasowe badania wykazały, że G4 forumuje się i znika bardzo szybko. To sugeruje, że jest to tymczasowa struktura, potrzebna do wypełnienia konkretnych funkcji, a gdy istnieje zbyt długo może być szkodliwa dla komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy, na czele którego stali specjaliści z University of Edinburgh, zidentyfikował geny powiązane ze starzeniem się i wyjaśnia, dlaczego proces starzenia się przebiega tak różnie u różnych ludzi. Wyniki badań sugerują, że utrzymywanie odpowiedniego poziomu żelaza we krwi pomaga starzeć się lepiej i żyć dłużej.
      Naukowcy oparli swoje badania na na analizie danych genetycznych ponad miliona osób. Jesteśmy bardzo podekscytowani tymi wynikami. Mamy tutaj silną sugestię, że zbyt wysoki poziom żelaza we krwi zmniejsza liczbę zdrowo przeżytych lat oraz że utrzymywanie odpowiedniego poziomu żelaza pozwala kontrolować proces starzenia się. Sądzimy, że nasze odkrycia dotyczące metabolizmu żelaza pozwoli wyjaśnić, dlaczego spożywanie bogatego w żelazo czerwone mięso wiąże się z różnymi schorzeniami wieku starszego, jak na przykład z chorobami serca, mówi główny badać doktor Paul Timmers.
      Wraz z wiekiem nasz organizm powoli traci zdolność do homeostazy, czyli utrzymywania równowagi pomiędzy poszczególnymi parametrami. Brak tej równowagi jest przyczyną wielu chorób, a w końcu śmierci. Jednak przebieg procesu starzenia się jest bardzo różny u różnych ludzi. U niektórych pojawiają się poważne chroniczne schorzenia już w dość młodym wieku i ludzie ci szybko umierają, inni z kolei żyją w zdrowiu przez bardzo długi czas i do końca swoich dni są w dobrej kondycji.
      Autorzy najnowszych badań przyjrzeli się genom i odkryli dziesięć regionów odpowiedzialnych za długość życia, długość życia w zdrowiu oraz długość życia w idealnych warunkach. Naukowcy zauważyli, że istnieje silna korelacja pomiędzy tymi trzema czynnikami, a poziomem żelaza we krwi. Badania statystyczne przeprowadzone metodą randomizacji Mendla potwierdziły, że poziom żelaza ma najbardziej istotny wpływ na długość życia w zdrowiu.
      Na poziom żelaza we krwi wpływ ma nasza dieta. Zbyt wysoki lub zbyt niski jego poziom jest powiązany z chorobami wątroby, chorobą Parkinsona, a w starszym wieku wiąże się z obniżeniem zdolności organizmu do zwalczania infekcji. "Możliwości syntezy hemu spadają wraz z wiekiem. Jego niedobory prowadzą do akumulacji żelaza, stresu oksydacyjnego i dysfunkcji mitochondriów.
      Akumulacja żelaza pomaga patogenom w podtrzymaniu infekcji, co jest zgodne z obserwowaną u osób starszych podatnością na infekcje. Z kolei nieprawidłowa homeostaza żelaza w mózgu wiąże się z chorobami neurodegeneracyjnymi, jak choroba Alzheimera, Parkinsona czy stwardnienie rozsiane, piszą autorzy badań.
      Naukowcy zastrzegają, że kwestie te wymagają dalszych badań, ale już przewidują, że ich odkrycie może doprowadzić do opracowania leków, które zmniejszą niekorzystny wpływ starzenia się na zdrowie, wydłużą nie tylko ludzkie życie, ale też okres życia w zdrowiu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Obecnie wstępną diagnozę nowotworów mózgu wykonuje się na podstawie badań obrazowych, jednak diagnoza szczegółowa, określająca np. konkretny rodzaj nowotworu, wymaga wykonania biopsji. Możliwość nieinwazyjnego zdiagnozowania nowotworu, oznaczałaby olbrzymi postęp w walce z nowotworami mózgu.
      Grupa naukowców Farshad Nassiri, Ankur Chakravarthy i ich koledzy z University of Toronto, we współpracy z amerykańskimi kolegami, informują na łamach Nature Medicine o opracowaniu wysoce czułego testu z krwi, który pozwala dokładnie diagnozować i klasyfikować różne typy guzów mózgu. Test opiera się na najnowszych odkryciach naukowych, dzięki którym wiemy, że profile metylacji DNA w plazmie są wysoce specyficzne dla różnych guzów i pozwalają na odróżnienie od siebie guzów pochodzących od tych samych linii komórkowych.
      Gdybyśmy dysponowali lepszą i bardziej wiarygodną metodą diagnozowania i klasyfikowania podtypów guzów, moglibyśmy zmienić sposób opieki nad pacjentem, mówi doktor Gelareh Zadeh, szefowa chirurgii onkologicznej w Cancer Care Ontario. To zaś miałoby olbrzymi wpływ na planowanie i przebieg leczenia.
      Jeden z autorów, doktor Danel De Carvalho, specjalizuje się w badaniu wzorców metylacji DNA. Kierowane przez niego laboratorium już wcześniej opracowało metodę badania wzorców metylacji za pomocą płynnej biopsji. Teraz, na potrzeby najnowszych badań, naukowcy porównali dane ze szczegółowych analiz tkanek nowotworów mózgu 221 pacjentów, z badaniem swobodnie krążącego DNA nowotworowego (ctDNA) obecnego w osoczu tych osób. Dzięki temu byli w stanie połączyć konkretne podtypy guzów mózgu z ctDNA krążącym we krwi. Następnie na tej podstawie opracowali algorytm, który klasyfikuje nowotwory mózgu wyłącznie na podstawie ctDNA.
      Jak zauważa doktor Zadeh, wcześniej nie było możliwe diagnozowanie nowotworów mózgu na podstawie badań krwi ze względu na istnienie bariery mózg-krew. Jednak nasz test jak tak czuły,że wykrywa we krwi nawet minimalne sygnały świadczące o istnieniu nowotworu. Mamy teraz nową nieinwazyjną metodę, która pozwala na wykrywanie i klasyfikowanie guzów mózgu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...