Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Najpotężniejszy zespół laserów pobił kolejny rekord

Recommended Posts

National Ignition Facility, najpotężniejszy na świecie zespół laserów, pobił swój kolejny rekord. Tym razem lasery dostarczyły do celu 2,15 megadżula energii. To o 15% więcej niż przewiduje specyfikacja NIF oraz ponad 10% więcej niż dotychczasowy rekord wynoszący 1,9 MJ, który ustanowiono w marcu 2012 roku.

Użytkownicy NIF zawsze proszą nas o więcej energii do ich eksperymentów, gdyż im więcej energii, tym lepsze wyniki badań. Ostatnie osiągnięcie to ważny krok w kierunku zwiększania możliwości NIF. To pokazuje, że możemy pracować z wyższymi energiami niż przewidywano podczas projektowania NIF, mówi dyrektor Mark Herrmann.

Celem ostatnich prac było przekonanie się, jak dużą ilość energii można uzyskać za pomocą obecnie zinstalowanego sprzętu i optyki. Maksymalizacja mocy NIF ma zasadnicze znaczenie dla głównego celu, dla którego ośrodek ten został powołany – badań nad fuzją jądrową.

Ośrodek wykorzystuje 192 lasery i dziesiątki tysięcy komponentów optycznych, takich jak soczewki, lustra i kryształy. To jedne z najdoskonalszych elementów tego typu, jakie kiedykolwiek powstały. Prowadzone badania mają posłużyć też m.in. dalszemu udoskonalaniu elementów optycznych.

NIF już zapisał się w historii nauki, jako pierwszy system, który dostarczył więcej niż megadżul energii. Teraz przekroczono barierę dwóch megadżuli.

NIF ma jednak nie tylko rozpocząć epokę kontrolowanej reakcji termonuklearnej. Zakład posłuży do badań nad bronią jądrową. Stany Zjednoczone od ponad 20 lat nie wyprodukowały żadnej nowej głowicy jądrowej, a od 1992 roku nie przeprowadziły żadnej podziemnej próby z bronią jądrową. NIF pozwoli zachować starzejący się arsenał w dobrym stanie. W końcu trzecim z zadań National Ignition Facility będzie umożliwienie naukowcom badania tego, co dzieje się wewnątrz gwiazd.


« powrót do artykułu

Share this post


Link to post
Share on other sites

"NIF pozwoli zachować starzejący się arsenał (jak rozumiem - broni jądrowej) w dobrym stanie."

Czy ktoś może mi to wyjaśnić? Bo jakoś nijak nie wiem w jaki sposób najpotężniejszy na świecie zespół laserów ma w dobrym stanie zachować starzejący się arsenał broni jądrowej.

Share this post


Link to post
Share on other sites

Chodzi zapewne, mówiąc w duzym uproszczeniu, o to, w jaki sposób, zjawisko połowicznego rozpadu plutonu i związany z tym rozkład gęstości neutronów i promieniowania gamma podczas "zapłonu" ładunku wpływa na wydajność fuzji termonuklearnej w drugim stopniu ładunku, zawierającym paliwo do tejże fuzji. Jak wiadomo, dzięki laserom, osiąga się stan wysokotemperaturowej plazmy powstałej z niewielkiej porcji paliwa, w ktorej owo zjawisko fuzji zachodzi. Mimo, że nie jest ono jeszcze dość wydajne i nie przebiega w sposób ciągły aby móc je wykorzystać do celów energetycznych, obserwowanie go pozwala jednak budować, weryfikować i doskonalić modele teoretyczne. Skalowalność plazmy daje nam także możliwość rozszerzenia zjawisk w skali mikro na skale wręcz astronomiczne, co także sprzyja budowie i weryfikacji modeli fuzji w gwiazdach oraz gorących obłokach materii międzygwiezdnej.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Terapia przeciwnowotworowa, której celem było usunięcie guza bez potrzeby odwoływania się do radio- i chemioterapii czy chirurgii, pomyślnie przeszła kolejny etap badań klinicznych. Rok po leczeniu u 13 z 15 pacjentów cierpiących wcześniej na nowotwór prostaty, nie wykryto śladów choroby.
      Terapia, opracowana na Rice University, jest prawdopodobnie pierwszą fototermalną terapią przeciwnowotworową, której pozytywne wyniki zostały opublikowane w piśmie recenzowanym. Jej opis ukazał się na łamach PNAS.
      W badaniach wzięło udział 16 mężczyzn w wieku 58–79 lat ze zlokalizowanym rakiem prostaty stwarzającym niskie i średnie ryzyko wzrostu i przerzutowania. Terapia polegała na zlokalizowanej ablacji za pomocą nanocząstek złota. Piętnastu pacjentom pierwszego dnia dożylnie podano nanocząstki złota, a drugiego dnia przeprowadzono zabieg ablacji. Wszyscy tego samego dnia wrócili do domu. Po 3, 6 i 12 miesiącach po zabiegu przeprowadzono badania pod kątem występowania u nich nowotworu. Jedynie u 2 z 15 mężczyzn wykryto guza.
      Wstrzyknięcie nanosfer ze złota i krzemu pozwoliło na precyzyjne usunięcie guza i oszczędzenie reszty prostaty. W ten sposób uniknęliśmy niekorzystnych skutków ubocznych i poprawiliśmy komfort życia pacjentów, którzy po tradycyjnych zabiegach mogliby mieć m.in. problemy z erekcją czy utrzymaniem moczu, powiedział główny autor badań, profesor Ardeshir Rastinehad.
      Badania kliniczne wciąż trwają i dotychczas wzięło w nich udział 44 pacjentów leczonych Nowym Jorku, Teksasie i Michigan.
      Autorkami nowej terapii są inżynier Naomi Halas i bionżynier Jennifer West. Przed około 20 laty postanowiły one skupić się na terapii bazującej na nanocząstkach i od około roku 2000 nad takim rozwiązaniem pracowały.
      Same nanocząstki, krzemowe sfery pokryte złotem, zostały stworzone przez Halas w 1997 roku. Uczona wykazała, że zmieniając grubość warstwy złota można spowodować, że nanocząstki będą reagowały na światło o różnej długości fali. Około 2000 roku wraz z West opracowała sposób niszczenia komórek nowotworowych poprzez podgrzanie nanocząstek za pomocą lasera o niskiej mocy pracującego w bliskiej podczerwieni. Ten zakres fali światła penetruje tkanki nie czyniąc im krzywdy. Panie zyskały rozgłos i założyły firmę Nanospectra Biosciences, której celem było przystosowanie nowej terapii do zastosowań klinicznych. W tym samym czasie ojciec pani Halas zachorował na nowotwór prostaty i widząc, jak cierpi w wyniku skutków ubocznych leczenia, uczona zdecydowała, że będzie prowadziła badania nanocząstek pod kątem opracowania terapii bez skutków ubocznych.
      Prace trwały tak długo m.in. z tego powodu, że West i Halas stworzyły zupełnie nową technologię i Agencja ds. Żywności i Leków (FDA) nie wiedziała, jak się do niej odnieść. To były pierwsze nanocząstki, które rzeczywiście nadawały się do wprowadzenia do ludzkiego organizmu. Miałyśmy coś, co wyglądało jak kroplówka. FDA nie wiedziała, czy traktować je jak lek czy jako urządzenie. W pewnym momencie w FDA zastanawiano się nawet nad stworzeniem osobnego wydziału zajmującego się nanoterapiami, wspomina West.
      W końcu agencja zdecydowała się na regulowanie nowej terapii i uznanie jej za leczenie urządzeniem. Przed około 10 lat rozpoczęły się pierwsze testy kliniczne, których celem była ocena bezpieczeństwa terapii. Testy prowadzono na pacjentach z najbardziej zaawansowanymi stadiami rozwoju nowotworów głowy i szyi. W 2015 roku do obu pań dołączył doktor Rastinehad, który był jednym z autorów nowej techniki precyzyjnego obrazowania nowotworów prostaty. To on zaproponował wykorzystanie tej techniki – łączącej rezonans magnetyczny i ultradźwięki – jako platformy do minimalnie inwazyjnego precyzyjnego leczenia guzów prostaty za pomocą nanocząstek Halas i West.
      Ta praca pokazuje, jakie możliwości stoją za połączonymi siłami inżynierii i medycyny. Pozwalają one na praktyczne zastosowanie nowych technologii w medycynie klinicznej i poprawienie komfortu życia pacjentów, mówi West.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ramach prowadzonego przez Pentagon projektu Non-Lethal Weapons Program powstały... gadające kule plazmy. Naukowcy pracujący przy projekcie Laser Induced Plasma Effect wykorzystują lasery do zadawania bólu bez wywoływania oparzeń, generowania silnych dźwięków i rozbłysków oraz wydawania poleceń głosowych na odległość.
      Wykorzystywane promienie lasera mogą przejść przez szyby budynku, jednak nie penetrują jeszcze innych ciał stałych. Technologia znajduje się w początkowej fazie rozwoju. W przyszłości ma ona posłużyć ochronie baz wojskowych, różnego typu instalacji czy innych stałych elementów. Nie można jednak wykluczyć, że po opracowaniu odpowiedniego źródła zasilania urządzenia będzie można montować na samochodach i np. wykorzystywać je do kontroli tłumów czy ochrony konwojów.
      Podczas ostatniej rundy testów specjaliści skupili się na generowaniu ludzkiej mowy za pomocą lasera. Pomysł polega na wytworzeniu plazmy za pomocą jednej wiązki lasera, a następnie na potraktowaniu plazmy kolejnymi wiązkami tak, by wprawić ją w drgania o odpowiedniej częstotliwości i wygenerować ludzką mowę. Właśnie udało się to osiągnąć w warunkach laboratoryjnych.
      Dave Law, główny naukowiec w Non-Lethal Wapons Directorate mówi, że kolejnym celem jest wygenerowanie gadającej plazmy w laboratorium w odległości 100 metrów od laserów, później naukowcy będą chcieli przeprowadzić podobny eksperyment, ale na odległości liczonej w kilometrach. Law optymistycznie patrzy w przyszłość nowej technologii. Głównym problemem było bowiem opracowanie i dostrojenie algorytmu generującego mowę. Gdy już go rozwiązano, odległość przestaje być przeszkodą. Można to zastosować wszędzie. Odległość nie robi różnicy. Wystarczy wygenerować plazmę w pobliżu celu, modulować ją i wytworzyć mowę, mówi uczony. Jego zdaniem w ciągu 5 lat technologia będzie już na tyle dojrzała, że będzie można wyposażyć w nią oddziały wojskowe.
      Co więcej, ta sama technologia może zostać użyta jeszcze na dwa inne sposoby. Można za jej pomocą uzyskać efekt granatu hukowego. Pozwala bowiem na niemal nieprzerwane generowanie impulsów dźwiękowych o głośności 155 decybeli w pobliżu wyznaczonego celu. To znaczny postęp w porównaniu z granatem hukowym, który generuje maksymalnie dwa impulsy.
      Po drugie pozwala ona, za mocą bardzo krótkich impulsów laserowych, wytworzyć niewielką kulkę plazmy i skierować ją, przez ubranie, na skórę człowieka. Plazma wyżłobi w skórze miniaturowy otwór, zbyt mały by mówić o uszkodzeniu skóry, ale wystarczający, by wywołać odczucia bólowe. Można więc w ten sposób powstrzymywać napastnika czy rozpraszać tłum, nie robiąc ludziom krzywdy.
      Na załączonym poniżej filmie można posłuchać gadającej plazmy.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy opracował metodę przechowywania danych, która niemal nie zużywa energii. Cyfrowe dane są zapisane na nośniku magnetycznym, który nie potrzebuje zasilania. Cała metoda jest niezwykle szybka i rozwiązuje problem zwiększenia wydajności przetwarzania danych bez zwiększania poboru energii.
      Obecnie centra bazodanowe odpowiadają za 2–5 procent światowego zużycia energii. W czasie ich pracy generowane są olbrzymie ilości ciepła, które wymagają dużych ilości energii przeznaczonej na chłodzenie. Problem jest na tyle poważny, że np. Microsoft zatopił centra bazodanowe w oceanie, by je lepiej chłodzić i obniżyć koszty.
      Większość danych przechowywanych jest w formie cyfrowej, gdzie 0 i 1 są reprezentowane za orientacji domen magnetycznych. Nad materiałem magnetycznym przesuwa się głowica odczytująco/zapisująca.
      Teraz na łamach Nature dowiadujemy się o nowej metodzie zapisu, która wykorzystuje niezwykle krótkie, trwające bilionowe części sekundy, impulsy światła, które wysyłane są do anten umieszczonych na magnesach. Całość pracuje niezwykle szybko i niemal nie zużywa przy tym energii, gdyż temperatura magnesów nie rośnie.
      Autorzy nowej metody wykorzystali impulsy światła w zakresie dalekiej podczerwieni, w paśmie teraherców. Jednak nawet najpotężniejsze terahercowe źródła światła nie są na tyle mocne, by zmienić orientację pola magnetycznego. Przełom nadszedł, gdy uczeni opracowali wydajny mechanizm sprzęgania pomiędzy spinem pola magnetycznego i terahercowym polem elektrycznym. Następnie stworzyli miniaturowe anteny, które pozwalają skoncentrować, a zatem i wzmocnić pole elektryczne światła. Okazało się ono na tyle silne, że można za jego pomocą zmieniać spin w ciągu bilionowych części sekundy.
      Temperatura magnesu nie rośnie podczas pracy, gdyż cały proces zapisu wymaga jednego kwanta energii na spin. Rekordowo niski pobór energii czyni tę metodę skalowalną. Przyszłe systemy do składowania danych będą mogły wykorzystać również świetne zdefiniowanie przestrzenne anten, co pozwoli na stworzenie praktycznych układów pamięci magnetycznej o maksymalnej prędkości i efektywności energetycznej, mówi jeden z autorów badań, doktor Rościsław Michajłowskij z Lancaster University.
      Uczony planuje przeprowadzenie kolejnych badań, podczas których chce wykorzystać nowy ultraszybki laser z Lancaster University oraz akceleratory z Cockroft Institute zdolne do generowania intensywnych impulsów światła. Chce w ten sposób określić praktyczne i fundamentalne limity prędkości i energii dla zapisu magnetycznego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Praca amerykańskiego naukowca może pomóc w odtworzeniu zniszczonych elementów katedry Notre Dame. W 2015 roku Andrew Tallon, profesor sztuki z Vassar College wykorzystał lasery do stworzenia szczegółowej cyfrowej kopii kościoła. Uczony specjalizował się w badaniu architektury gotyku i próbował zrozumieć, w jaki sposób powstały wielkie katedry Europy. Podczas tworzenia cyfrowej kopii Notre Dame uczony dokonał ponad 2 miliardów pomiarów.
      Tallon zmarł w grudniu ubiegłego roku, jednak jego praca może okazać się nieocenioną pomocą, gdyż dokładnie pokazuje, jak katedra wyglądała przed pożarem, a że została wykonana w celach naukowych, to zawarto w niej wiele nieocenionych narzędzi, takich jak np. możliwość pomiarów odległości czy kątów pomiędzy wybranymi punktami.
      Jeśli pojawi się jakaś wątpliwość do co tego, jak dany element wyglądał, można skorzystać z cyfrowej wersji i wszystko dokładnie zmierzyć. Skany są niezwykle dokładne i zawierają szczegóły, o jakich kilka lat wcześniej nie można było marzyć, mówi Dan Edelson, dyrektor firmy STEREO specjalizującej się w modelowaniu informacji.
      Przez wieki Notre Dame była zmieniana, ozdabiana, przebudowywana i odnawiana. Jednak dzięki modelowi stworzonemu przez Tallona można było zauważyć szczegóły, które wcześniej pozostały ukryte. Na przykład okazało się,że wewnętrzne kolumny na zachodnim krańcu świątyni nie stoją w jednej linii.
      W czasie swojej pracy Tallon ustawił laser w ponad 50 miejscach katedry i dokonywał stamtąd szczegółowych pomiarów laserowych. Pomiarów dokonał z dokładnością do milimetrów, dzięki czemu możliwe będzie odtworzenie np. konstrukcji zawalonego dachu.
      Oczywiście sam model Tallona nie wystarczy. Podczas odbudowy specjaliści będą korzystali z zapisów dotyczących prac konserwatorskich z przeszłości, fotografii, rysunków czy opisów.
      Tymczasem z Paryża nadeszły dobre wieści. Jeden z członków Grupy Odbudowy Zabytków odnalazł w zgliszczach miedzianego koguta, który zdobił szczyt iglicy. Gdy iglica się zawaliła, los koguta wydawał się przesądzony. Rzeźba jest niezwykle ważną częścią Notre Dame. W jej wnętrzu umieszczono bowiem kolec z korony cierniowej, relikwie patronki Paryża św. Genowefy i patrona Francji św. Dionizego. Na razie brak informacji o stanie relikwii. Wiadomo też, że ocalały też wspaniałe organy katedry, na zdjęciach widoczne są całe rozety ze szkłem z XIII wieku, jeden ze znaków rozpoznawczych katedry. Wcześniej informowaliśmy zaś, że strażacy uratowali Koronę Cierniową i tunikę św. Ludwika.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy, a wśród nich Polacy, opracowali nowy, bardzo odporny na promieniowanie materiał. Może on zrewolucjonizować projektowanie elementów konstrukcyjnych w reaktorach syntezy termojądrowej.
      W pracach międzynarodowego zespołu, których wyniki przedstawiono w prestiżowym czasopiśmie Science Advances, uczestniczyła grupa ekspertów pod kierunkiem dra inż. Jana Wróbla z Politechniki Warszawskiej. Prace polskich badaczy sfinansowane zostały z programu HOMING Fundacji na rzecz Nauki Polskiej (FNP).
      Naukowcy mierzyli się z jednym z głównych problemów technologicznych związanych z energetyką jądrową. Polega on na tym, że materiały konstrukcyjne pod wpływem napromieniowania ulegają niszczeniu. Rozwiązaniem problemu może być zastosowanie tzw. stopów o wysokiej entropii, czyli o dużym stopniu nieuporządkowania atomów. Jest to nowa klasa materiałów, składających się z czterech lub więcej składników o podobnym stężeniu. Stopione ze sobą składniki mają wyjątkową mikrostrukturę i unikalne właściwości – czytamy w informacji przesłanej PAP przez FNP.
      Jak wynika z najnowszych badań opublikowanych w czasopiśmie Science Advances, stop o wysokiej entropii W-Ta-Cr-V (wolfram, tantal, chrom, wanad) jest niezwykle odporny na promieniowanie i zachowuje znakomite właściwości mechaniczne. Z tego względu materiał ten jest atrakcyjnym kandydatem do zastosowań w elementach konstrukcyjnych przyszłych reaktorów jądrowych lub syntezy termojądrowej.
      Publikacja jest efektem międzynarodowej współpracy naukowców z Wydziału Inżynierii Materiałowej Politechniki Warszawskiej z naukowcami z Los Alamos National Laboratory, Argonne National Laboratory i Pacific Northwest National Laboratory w USA oraz z Culham Centre for Fusion Energy w Anglii.
      Badacze próbowali zrozumieć, w jaki sposób uporządkowanie atomowe oraz podstawowe właściwości stopów zależą od stężeń poszczególnych pierwiastków oraz od temperatury. Grupa dr. inż. Jana Wróbla wyjaśniła, dlaczego w stopie wydzielają się fazy o zwiększonej zawartości atomów wanadu i chromu.
      Ze względu na olbrzymią liczbę możliwych kombinacji, zarówno doboru pierwiastków jak i ich stężeń, eksperymentalne przebadanie wszystkich kombinacji stopów nie było możliwe. Dlatego polscy naukowcy stworzyli model teoretyczny. Połączył on metody obliczeniowe oparte na mechanice kwantowej z metodami statystycznymi.
      Stworzony przez mój zespół model (...) wykazał, że w stopie W-Ta-Cr-V występuje silna tendencja do przyciągania pomiędzy atomami V i Cr, które jest przyczyną wydzielania faz V-Cr obserwowanych eksperymentalnie przez naszych współpracowników z USA. Co więcej, symulacje komputerowe przeprowadzane systematycznie w szerokim zakresie stężeń i temperatur mogą się przyczynić do znalezienia optymalnego składu stopu, który potencjalnie może mieć jeszcze lepsze właściwości niż ten opisany w naszej publikacji – mówi dr Wróbel.

      « powrót do artykułu
×
×
  • Create New...