Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Efekt „bicia serca” w płynnym metalu

Recommended Posts

Na australijskim University of Wollongong fikcja naukowa stała się nauką. Uczeni uzyskali efekt „bicia serca” w płynnym metalu. Spowodowali, że płynny metal pulsował w regularnym przewidywalnym rytmie. Osiągnięcie zostało opisane w najnowszym numerze Physical Review Letters.

Naukowcy uzyskali wspomniany efekt za pomocą elektrochemicznej stymulacji kropli ciekłego galu. Gal to miękki metal, który staje się płynny w temperaturze powyżej 29,7 stopnia Celsjusza. Osiągnięcie australijskich naukowców może znależć zastosowanie w akuatorach dla sztucznych mięśni, robotyce oraz układach scalonych.
Dzięki stworzeniu specjalnych elektrod i podaniu napięcia do kropli płynnego metalu byliśmy w stanie spowodować, że metal poruszał sie jak bijące serce, mówi profesor Xiaolin Wang, który stał na czele grupy badawczej.

Podobny efekt uzyskiwano wcześniej w płynnej rtęci, jednak pojawiał się tam przypadkowy poboczny ruch, który trudno było zlikwidować czy kontrolować. Ponadto rtęć jest wysoce toksyczna, przez co nie nadaje się do większości zastosowań.
Płynny gal nie jest toksyczny i można w nim uzyskać regularny ruch o częstotliwości od 30 do 100 impulsów na minute. Częstotliwość ta jest zależna od wpływu grawitacji i wielkości kropli.

Profesor Wang przyznaje, że inspiracją dla jego prac były częściowo systemy biologiczne a częściowo science-fiction, takie jak robot T-1000 z filmu Terminator 2. Dla mnie nic nie jest fikcją. Science-fiction to nauka, która nie została jeszcze odkryta. Gdy widzę jakieś zjawisko w filmach science-fiction, zastanawiam się, jak można by je odtworzyć w laboratorium, wyjaśnia uczony.

Nie martwcie się, nie chcę stworzyć robota z Terminatora. Jednak funkcjonalność płynnego robota może przydać się w codziennym życiu, więc chcę odkryć jak najwięcej przydatnych funkcji w płynnym metalu. Płynny robot z Terminatora 2 ma dwie interesujące cechy. Pierwsza to zmiana kształtu i możliwość powrotu do kształtu poprzedniego. Druga to możliwość przejścia ze stanu miękkiego do twardego. Przypomnijcie sobie scenę, w której wydłuża ramię i zmienia je w miecz, dodaje Wang.

Uczony przypomina, że oba stany już zostały odkryte. Grupa w Chinach i inna grupa w Stanach Zjednoczonych odkryły pierwszy z tych stanów, zmianę kształtu i powrót do kształtu pierwotnego. A moja grupa, tutaj na University of Wollongong odkryła drugie z tych zjawisk, przejście od stanu miękkiego do twardego za pomocą napięcia prądu elektrycznego.

Zdaniem uczonego przyszłością są elastyczne, miękkie roboty. A do ich zasilania może przydać się miękkie urządzenie działające jak ludzkie serce. W wielu systemach biologicznych to serce wszystko napędza. Więc metal poruszający się jak bijące serce mógłby być użyty jako pompa wymuszająca ruch płynu w kanałach, dodaje Wang.

Takie urządzenie może działać też jak oscylator. Istotnym elementem układów elektronicznych jest precyzyjna kontrola czasu. Regularnie bijące metalowe serce może taką kontrolę zapewniać.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Amerykańscy naukowcy stworzyli pierwsze żywe maszyny. Zbudowali je z komórek żaby szponiastej (Xenopus laevis), bezogonowego płaza zamieszkującego Afrykę. Roboty poruszają się i można je dostosowywać do swoich potrzeb. Jednym z najbardziej udanych jest miniaturowa maszyna wyposażona w dwie nogi. Z kolei inny projekt zawiera wewnątrz otwór, w którym może transportować niewielkie ładunki.
      Jak zapewnia Michael Levin, dyrektor Allen Discovery Center na Tufts University, to całkowicie nowe formy życia. Nigdy wcześniej nie istniały one na Ziemi. To żywe, programowalne organizmy. Tego typu rozwiązanie ma olbrzymie zalety w porównaniu z tradycyjnymi robotami. Po pierwsze, żywe roboty potrafią samodzielnie się naprawić. Po drugie zaś, można je zaprogramować tak, by po wykonaniu zadania ginęły, ulegając naturalnemu rozkładowi, jak inne organizmy żywe.
      Ich twórcy uważają, że w przyszłości tego typu roboty mogą np. oczyszczać oceany z mikroplastiku, samodzielnie lokalizować i przetwarzać toksyczne substancje, dostarczać leki do wyznaczonego miejsca w organizmie czy w końcu oczyszczać ze złogów ściany naczyń krwionośnych.
      Projektowaniem robotów zajmuje się specjalny „algorytm ewolucyjny” działający na superkomputerze. Projektowanie zaczyna się od symulacji przypadkowego połączenia 500 do 1000 komórek skóry i serca. Następnie każdy z takich robotów jest wirtualnie testowany. Te projekty, które najlepiej odpowiadają oczekiwaniu naukowców, mają największą szansę wykonać założone zadania, są dalej rozwijane i na ich podstawie tworzy się nowe roboty.
      Urządzenia są napędzane przez komórki serca, które spontanicznie kurczą się i rozszerzają, działając jak niewielkie silniki. Robotów nie trzeba niczym zasilać. Komórki mają na tyle dużo energii, że żyją przez 7-10 dni.
      Grupa Levina poczekała na 100. generację robotów stworzonych przez algorytm i z niej wybrała niektóre projekty do zbudowania ich w laboratorium. Jako, że do stworzenia maszyn użyto komórek Xenopus, urządzenia zyskały miano „xenobotów”.
      Architektura xenobotów jest, jak zapewniają twórcy, skalowalna. Podczas eksperymentów z prawdziwymi robotami powstały takie, które poruszały się w wodzie po linii prostej, inne krążyły w kółko, jeszcze inne tworzyły grupy. Można je wyposażyć w naczynia krwionośne, układ nerwowy czy komórki odbierające np. bodźce świetlne i stworzyć w ten sposób proste oczy. Jeśli do zbudowania robotów użyjemy komórek ssaków, urządzenia będą mogły pracować na suchym lądzie.
      Głównym celem prac zespołu Levina jest zrozumienie życia i tego, jak ono powstaje i funkcjonuje. Oczywiście rodzi to wiele pytań etycznych, chociażby o status xenobotów. Czy należy uznawać je za roboty, czy za organizmy żywe. I do jakiego stopnia złożony powinien być ich układ nerwowy.
      Xenoboty zostały szczegółowo opisane na łamach PNAS, w artykule A scalable pipeline for designing reconfigurable organisms.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2019 r. w polskich szpitalach przeprowadzono rekordową liczbę niemal 900 zabiegów przy użyciu robotów da Vinci – wynika z danych udostępnionych PAP przez firmę Synektik, dystrybutora tego systemu w naszym kraju. Polska chirurgia robotyczna wciąż jest jednak w powijakach.
      Pierwszy robot chirurgiczny da Vinci trafił do Polski już w 2010 r., ale robotyka chirurgiczna wciąż się w Polsce rozwija. Przełomowy był 2018 r., kiedy w polskich szpitalach uruchomiono pięć robotów operacyjnych da Vinci i przeprowadzono przy ich użyciu 60 zabiegów. Aż cztery aparaty zaczęto używać dopiero w czwartym kwartale tego roku, stąd tak duży wzrost zrobotyzowanych operacji w 2019 r.
      Rok 2019 zamykamy już z ośmioma systemami i niemal 900 przeprowadzonymi operacjami. Liczymy, że dynamika wzrostu zostanie utrzymana przez polski rynek chirurgii robotycznej także w 2020 roku – podkreśla Artur Ostrowski z firmy Synektik, która podsumowała skalę wykorzystania robotów. Zabiegi z udziałem systemu da Vinci przeprowadza się w Polsce zarówno w szpitalach prywatnych, jak i publicznych: we Wrocławiu, Warszawie, Poznaniu, Białymstoku, Krakowie, Wieliszewie i Siedlcach.
      Według eksperta zalety operacji z użyciem robota to niska utrata krwi, minimalizacja powikłań, mniejsze blizny pooperacyjne, co skraca rekonwalescencję i pobyt pacjentów w szpitalu. Wszystko to sprawia, że choć samo użycie robota pozostaje droższe niż klasyczna operacja, rozwój chirurgii robotycznej wiąże się dla całego polskiego systemu ochrony zdrowia z wymiernymi oszczędnościami – podkreślił Ostrowski.
      Na stosunkowo niedużą skalę wykorzystania robotów chirurgicznych w Polsce wskazuje raport „Rynek robotyki chirurgicznej w Polsce 2019. Prognozy na lata 2020-2023”, opracowany przez Upper Finance i PMR i opublikowany pod koniec 2019 r. Wynika z niego, że w USA przypada jeden robot chirurgiczny da Vinci na 100 tys. mieszkańców, w Europie jeden na 800 tys. mieszkańców, zaś w Polsce – jeden na aż 6,5 mln mieszkańców.
      Zdaniem Joanny Szyman z Upper Finance w kraju wielkości Polski powinno być około 40–50 robotów da Vinci. Biorąc pod uwagę stopień rozwoju rynku, sposób finansowania opieki zdrowotnej oraz warunki makroekonomiczne, do końca 2023 r. możemy się spodziewać w sumie około 30 instalacji - dodaje.
      W 2019 r. na świecie przeprowadzono około 1,25 mln operacji z wykorzystaniem niemal 5,5 tys. tego typu robotów. Najczęściej są one wykorzystywane w urologii, ginekologii, onkologii, bariatrii i chirurgii ogólnej, a ostatnio także w chirurgii klatki piersiowej oraz chirurgii głowy i szyi. Europejskim liderem w dostępie do robotyki medycznej są Niemcy, gdzie pracuje ponad 130 systemów da Vinci, oraz Włochy, gdzie jest ich ponad 120.
      Zdaniem analityków Upper Finance wykorzystanie robotów chirurgicznych w naszym kraju mogłoby wzrosnąć dzięki wprowadzeniu osobnego programu finansowania procedur z udziałem tych aparatów. Na razie nie ma takich możliwości, choć w 2017 r. Agencja Oceny Technologii Medycznych i Taryfikacji pozytywnie zaopiniowała refundację operacji robotycznych dla trzech wskazań: raka jelita grubego, raka gruczołu krokowego oraz raka błony śluzowej macicy.
      Zrobotyzowane operacje w naszym kraju są wykonywane prywatnie, w ramach grantów naukowych oraz usług finansowanych przez NFZ (jednak bez uwzględnienia dodatkowych kosztów związanych z eksploatacją robota). Najwięcej takich zabiegów dotyczy urologii, np. w usuwania guzów prostaty u mężczyzn.
      Zdaniem Artura Ostrowskiego poza finansowaniem kluczowy dla skutecznej i bezpiecznej implementacji tej technologii jest proces szkolenia operatorów. Systemy robotyczne pozostają przede wszystkim narzędziami w rękach wysoko wykwalifikowanych chirurgów.
      Potwierdza to Monika Stefańczyk z Pharma and Healthcare Business Unit Director w PMR. Twierdzi, że silnym hamulcem w całej opiece zdrowotnej zarówno prywatnej jak i publicznej są problemy z niewystarczającą liczbą wykwalifikowanej kadry medycznej. W przypadku zakupu robota świadczeniodawca nie może zapomnieć również o środkach związanych ze szkoleniem lekarzy i przygotowaniem kadry do obsługi tak skomplikowanego sprzętu. Warto zaznaczyć, że jest to również długotrwały proces – dodaje.
      Prezydent Międzynarodowego Stowarzyszenia na Rzecz Robotyki Medycznej prof. Zbigniew Nawrat, główny konstruktor robota Robin Heart, który ma być wykorzystywany w operacjach serca, uważa, że roboty dają siłę słabszym, sprawność tam, gdzie brakuje jej ludziom. Robot da Vinci optymalizuje ruchy operatora poprzez eliminację naturalnego drżenia mięśni i poprawienie pola widzenia. To z kolei pozwala zawęzić obszar interwencji chirurgicznej, a precyzja nacięć sprawia, że sam zabieg jest mniejszym obciążeniem dla pacjentów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      We wrześniu firma Boston Dynamics ujawniła, że produkowany przez nią robot-pies Spot jest testowany podczas wykonywania takich zadań jak monitorowanie budów, sprawdzanie infrastruktury gazowej, energetycznej i paliwowej oraz w zadaniach związanych z bezpieczeństwem publicznym. Teraz dowiadujemy się, że Spot był przez 90 dni testowany przez jednostkę saperską Massachusetts State Police (MSP).
      American Civil Liberties Union (ACLU) zwrócila się o szczegółowe informacje na temat reklamowanego przez MSP na Facebooku wydarzenia pod tytułem „Robotyka w organach ścigania”. Dzięki temu dowiedzieliśmy się, że stanowa policja wypożyczyła Spota na 3 miesiące.
      Jak wyjaśnia rzecznik prasowy MSP, Spot był używany w roli zdalnego mobilnego urządzenia obserwacyjnego, które dostarczało policji obraz miejsc niebezpiecznych, gdzie mogły znajdować się np. materiały wybuchowe czy uzbrojeni przestępcy. Roboty to wartościowe narzędzia, gdyż mogą dostarczyć informacji o potencjalnie niebezpiecznych miejscach, stwierdził David Procopio.
      Spot wyposażony jest w kamerę rejestrującą obraz w promieniu 360 stopni i radzi sobie w nieprzyjaznym terenie. Może też przenosić ładunki o wadze do 14 kilogramów.
      We wrześniu Boston Dynamics rozpoczęła sprzedaż Spota wraz z SDK, dzięki czemu klienci mogą rozwijać własne aplikacje oraz lepiej kontrolować robota.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Melson – konstrukcja Koła Naukowego Robotyków KNR działającego przy Wydziale Mechanicznym Energetyki i Lotnictwa Politechniki Warszawskiej z sukcesami zakończył swój udział w zawodach International Robotic Competition RoboChallenge 2019 w Rumunii (1-3 listopada 2019). Robot zajął pierwsze miejsce w kategorii Humanoid Robot, drugie miejsce w kategorii Humanoid Sumo oraz został wyróżniony w kategorii Freestyle Showcase.
      Konkurencja Humanoid Robot składała się z dwóch części. Roboty musiały wejść na schody składające się z trzech stopni oraz przejść tor z postawionymi na nim przeszkodami. Melson bez problemu wykonał pierwszą część zadania. W drugiej także poradził sobie świetnie – bezbłędnie omijał przeszkody na swoim torze, utrzymując przy tym poprawny toru ruchu. Zwycięstwo w tej kategorii smakuje wyjątkowo, bo robot naszych studentów jako jedyny był skonstruowany i oprogramowany przez samych zawodników – uczestników zawodów.
      W konkurencji Humanoid Sumo dwa roboty umieszczane są na dużym ringu (dohyo). Ich zadaniem jest przewrócenie przeciwnika. Roboty są w pełni autonomiczne i lokalizują przeciwnika na podstawie odczytów z czujników. Za przewrócenie rywala robot otrzymuje punkt, a w gdy ten nie wstanie przez 10 sekund, następuje knock-out. Roboty głównie wyprowadzały ciosy, padając do przodu swoim „ciałem”, licząc, że to wywróci przeciwnika – opowiada Kornelia Łukojć. Jedynie Melson walczył, stosując typowe ruchy bokserskie, które przewracały rywali. Ostatecznie nasz robot zajął drugie miejsce, ale finał był najbardziej emocjonującą walką w tej konkurencji.
      Kategoria Freestyle Showcase to rywalizacja, w której liczy się pomysłowość i innowacyjność. Ocenie podlegają prezentacja i dokumentacja projektu. Wyróżnienie dla Melsona w tej konkurencji to kolejne potwierdzenie inżynierskich umiejętności jego twórców.
      Zawody RoboChallenge to największe zawody robotów organizowane w Europie i jedne z największych na świecie. W tegorocznej edycji wzięły udział 158 zespoły z 17 krajów, w tym 615 uczestników i 533 roboty startujące w 14 konkurencjach.
      Zespół Melsona: Maksymilian Szumowski (twórca), Kacper Mikołajczyk (koordynator), Bartosz Bok, Dominik Górczynski, Kornelia Łukojć, Jerzy Piwkowski, Przemysław Płoński, Patryk Saffer, Jakub Soboń, Larysa Zaremba, Paweł Żakieta, Karol Niemczycki

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      ROBOpilot Unmanned Aircraft Conversion System pomyślnie zdał egzamin przed Federalną Administracją Lotniczą (FAA), otrzymał zgodę na pilotowanie lekkich samolotów i zaczął samodzielnie latać. Wbrew temu, co mogłoby się wydawać, ROBOpilot nie jest tradycyjnym autopilotem. To urządzenie, które steruje samolotem tak, jak człowiek. Robot za pomocą ramienia manipuluje wolantem, naciska pedały i korzystając z systemu wizyjnego odczytuje dane ze wskaźników.
      System autorstwa firmy DZYNE Technologies ma z zadanie pomóc w rozwoju autonomicznych samolotów. Ma być znacznie tańszą alternatywą dla obecnie stosowanych metod. Zamiana myśliwca F-16 w samolot autonomiczny kosztowała około 1 miliona dolarów. Tymczasem technologia opracowywana przez DZYNE ma pozwolić na zainstalowaniu ROBOpilota w dowolnym samolocie, a gdy nie będzie on potrzebny, można go usunąć i samolot nadaje się do pilotowania przez człowieka.
      Wcześniejsze rozwiązania podobne do ROBOpilota to południowokoreański Pibot oraz ALIAS opracowany przez Pentagon. Jednak żaden z nich nie był w stanie samodzielnie prowadzić pełnowymiarowego samolotu.
      ROBOpilot potrafi wystartować, prowadzić samolot w czasie lotu i wylądować. To imponujące osiągnięcie w dziedzinie robotyki, mówi Louise Dennis z University of Liverpool. W przeciwieństwie do autopilota, który ma bezpośredni dostęp do czujników i systemu sterowania, ten robot jest umieszczany na miejscu pilota i musi prowadzić fizyczną interakcję z urządzeniami sterującymi oraz odczytywać wskaźniki.
      Twórcy ROBOpilota mówią, że może się on przydać do sterowania samolotami transportowymi, maszynami mającymi wlatywać w niebezpieczne środowisko oraz samolotami wykonującymi misje zwiadowcze i szpiegowskie.

      « powrót do artykułu
×
×
  • Create New...