Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Nanowłókna do chwytania wiatru "w żagle"
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
O niesporczakach, albatrosach, gepardach i innych rekordzistach świata zwierząt słyszeliśmy niejednokrotnie. Jednak świat pełen jest niezwykłych stworzeń, o których mało kto słyszał. Dlatego nasze zestawienie niezwykłych osiągnięć przygotowaliśmy nieco inaczej. Uwzględniliśmy w nim te mniej znane, może nie tak spektakularne, ale na pewno warte poznania zwierzęta.
Złote włosy i łuski
Jednym z takich niezwykłych, a przy tym niemal zupełnie nieznanych zwierząt jest Chrysomallon squamiferum. Już jego wygląd wskazuje, że nie mamy do czynienia ze ślimakiem jak każdy inny. Jego nazwa gatunkowa, przełożona na polski, brzmi "Złotowłosy noszący łuski". Niezwykły, przepiękny mięczak został po raz pierwszy zauważony w 2001 roku na głębokości ponad 2000 metrów w pobliżu studni hydrotermalnych. Nieformalnie nazywano go „łuskostopym”. I nic dziwnego, bo setki czarnych metalicznych sklerytów pokrywają stopę tego ślimaka. Miękki rdzeń rdzeń sklerytów pokryty jest konchioliną, biopolimerem stanowiącym warstwę ochronną mięczaków. Konchiolina była z kolei pokryta siarczkami żelaza: pirytem i greigitem. Nadawały one zwierzęciu wspaniały złoty kolor. Więc dwa lata po odkryciu pojawiła się propozycja nazwy gatunkowej: Chrysomallon squamiferum.
Niedługo potem na jaw wyszła kolejna tajemnica ślimaka. Naukowcy zauważyli, że jego muszla również pokryta jest siarczkami żelaza, co czyni go jedynym znanym zwierzęciem, które wbudowało żelazo w swój szkielet.
Minęły kolejne lata, zanim w 2015 roku Chong Chen – wówczas pracujący na University of Oxford – i jego zespół opisali gatunek zgodnie z wszelkimi wymogami, co umożliwiło jego sklasyfikowanie i nadanie mu nazwy. „Złotowłosy” stał się pierwszym przedstawicielem nowego rodzaju, Chrysomallon, do którego należy jako jedyny gatunek. W międzyczasie zaś okazało się, że „Złotowłosy” wcale nie musi być złoty. Przy jednym z kominów hydrotermalnych odkryto białą odmianę, której brak warstwy siarczku żelaza.
Chrysomallon występuje wyłącznie przy kominach hydrotermalnych Oceanu Indyjskiego, na głębokościach 2400–2900 metrów. Ten zagrożony gatunek jest niezwykły nawet jak na standardy spokrewnionych z nim ślimaków żyjących na dużych głębokościach.
Jego przełyk zamieszkują gammaproteobakterie prawdopodobnie zapewniające mu składniki odżywcze. Chrysomallon squamiferum może też pochwalić się wyjątkowo dużym sercem. Stanowi ono aż 4% objętości ciała. W stosunku do wielkości organizmu jest ono więc 3-krotnie większe niż serce człowieka.
Przed pająkami nie ma ucieczki
Wiosna i lato to ulubione pory roku niezliczonej rzeszy ludzi. A byłyby jeszcze bardziej ulubione, gdyby nie różne niewielkie żyjątka. I tym razem nie chodzi nam o wroga numer 1, czyli komara. Mowa o pająkach. Dla wielu ludzi są to najbardziej przerażające ze zwierząt zamieszkujących Ziemię. A w ciepłych miesiącach jest ich zdecydowanie zbyt dużo. Dlatego też ci, którzy boją się pająków, często z ulgą witają nadejście zimy. Jednak chłody od pająków nie chronią. Najzimniejszym miejscem zamieszkałym przez pająki jest bowiem wieś Ojmiakon w Jakucji. Najniższa zanotowana tam temperatura wyniosła -71,2 stopnia Celsjusza. A mimo to we wsi i jej okolicach zarejestrowano... 55 gatunków, należących do 11 rodzin. Głównie są to przedstawiciele rodzin Gnaphosidae, Lycosidae i Linyphiidae.
Przed pająkami nie chronią też upały. Mieszkają one również w Dolinie Śmierci w Kalifornii, gdzie zanotowano najwyższą temperaturę na powierzchni Ziemi (56,7 stopnia Celsjusza). Niektóre z gatunków wydają się celowo wybierać szczególnie gorące miejsca, gdzie znajduje się dużo soli. Pająki znaleziono też na Mount Everest na wysokości 6700 metrów, na Grenlandii i Svalbardzie.
Jedyny miejscem, w których mogą schronić się osoby cierpiące na arachnofobię jest Antarktyka. Znajdowano tam co prawda pająki, ale były to martwe osobniki zawleczone przez ludzi. Pająków nie ma też w morzach i oceanach. Nie wyewoluowały zdolności do ciągłego przebywania w słonej wodzie. Istnieją co prawda zwierzęta nazywane potocznie „pająkami morskimi”, ale w rzeczywistości nie są to pająki, a daleko z nimi spokrewnione kikutnice.
Są jednak pająki, żyjące w wodzie słodkiej. To gatunek Argyroneta aquatica. Potrafi oddychać pod wodą, zatem w niej poluje, pożywia się, linieje, składa jaja i kopuluje.
Wzór dla nanosatelitów
Alvinella pompejana to kolejny niezwykły mieszkaniec morskich głębin. Żyje przy kominach hydrotermalnych i trzeba mu przyznać, że lubi ciepełko. To najbardziej odporny na wysokie temperatury organizm na Ziemi. Tak, wiemy o niesporczakach. Jednak ich zdolność do przetrwania skrajnie wysokich temperatur związana jest z wejściem w stan anabiozy. Tymczasem kilkunastocentymetrowa Alvinella pompejana buduje rurkowate norki, w których mieszka, u wylotów kominów hydrotermalnych na Pacyfiku i prowadzi tam normalne życie. W miejscu, w którym takie mieszkanie jest przyczepione do podłoża, temperatury dochodzą do 105 stopni Celsjusza, a w samej rurce nie jest dużo chłodniej. Temperatury zmierzone u wylotu rurki wynoszą od 20 do 45 stopni Celsjusza. Znacznie trudniej jest zmierzyć je wewnątrz, gdyż zwierzęta żyją na głębokości 2500 metrów.
Dotychczasowe pomiary pokazały, że temperatura w rurce nie spada poniżej 60 stopni Celsjusza, z wielokrotnymi wzrostami do 80 stopni. Zwierzę aktywnie chłodzi wnętrze swojego mieszkania, zanurzając się i wynurzając z rurki. Miesza w ten sposób wodę z zewnątrz, z tą podgrzewaną w rurce przez podłoże. Zaobserwowano też, że A. pompejana jest w stanie przez krótki czas przebywać w wodzie o temperaturze do 105 stopni Celsjusza.
Okazuje się, że w życiu w temperaturach sięgających 80 stopni pomagają zwierzęciu... bakterie. Alvinella pompejana pokryta jest włochatymi naroślami. Przyczepione są do nich bakterie, które mogą tworzyć grubą warstwę, chroniącą zwierzę przed ekstremalnymi temperaturami. Bez bakterii zwierzę ginie, gdy temperatura otoczenia przekroczy 55 stopni Celsjusza.
A co ma głębinowy wieloszczet wspólnego z nanosatelitami? Przed kilkoma miesiącami naukowcy ze Szwecji zaproponowali rozwiązanie problemu przegrzewania się nanosatelitów inspirowane badaniami nad A. pompejana.
Mrówka-pędziwiatr
Cataglyphis bombycina biegają wyjątkowo szybko. Bo muszą. Te żyjące na Saharze mrówki wychodzą na powierzchnię na bardzo krótko, gdy ich główni wrogowie, jaszczurki, szukają schronienia w cieniu. A jaszczurki przecież lubią słońce. Jeśli się chowają, to naprawdę musi być gorąco.
Z okazji korzystają Cataglyphis bombycina. I pędzą do ciał zwierząt, zabitych przez upał. Te maleństwa poruszają się z prędkością 3,1 km/h, czyli 855 milimetrów na sekundę. W ciągu tej sekundy przebywają odległość 108 razy większą, niż długość ich ciała. Teraz porównajmy ich osiągnięcia z prędkością człowieka. H. sapiens o wzroście 170 cm musiałby w ciągu sekundy przebyć 183,6 metra, by dorównać mrówce. Oznacza to prędkość 661 km/h. Znacie kogoś, kto tak szybko jechał samochodem? A mrówka biega tak szybko, że dorówna kroku człowiekowi idącemu średnim tempem.
O tej porze dnia, gdy mrówki wychodzą na powierzchnię, temperatura piasku może sięgać 70 stopni Celsjusza. Tymczasem zwierzę musi utrzymać temperaturę własnego ciała poniżej zabójczej dla niego granicy 53,6 stopnia. Przetrwanie zapewniają zwierzęciu nie tylko sprawne odnóża, ale też srebrne włoski. Pędząca mrówka wygląda jak poruszająca się kropla rtęci. Pokrywające zwierzę włoski mają niezwykłe właściwości, które mogą zainspirować stworzenie nowatorskich osłon termicznych. Odbijają światło w zakresie widzialnym oraz bliskiej podczerwieni, ułatwiając jednocześnie oddawania ciepła przez mrówkę w średniej podczerwieni.
10 000 kroków? Nigdy w życiu!
W zalanych jaskiniach wschodniej Hercegowiny żyją odmieńce jaskiniowe. Mogą dożywać 100 lat, są niezwykle odporne na brak żywności, której zresztą w jaskiniach nie jest zbyt wiele. Mogą nie jeść przez wiele lat, a gdy już się biorą za posiłek, to są nim niewielkie kręgowce, ślimaki i czasem owady. Odmieńce to główne drapieżniki wodnych systemów jaskiniowych. Średnia długość ciała odmieńca wynosi około 24 centymetrów, chociaż są i takie, które dorastają do 40 centymetrów.
Odmieńce są ślepe, ale wrażliwe na światło. Uciekają od niego. Ich larwy mają normalne oczy, jednak szybko przestają się one rozwijać i rozpoczyna się ich atrofia. To, co z nich pozostaje leży głęboko pod skórą właściwą i rzadko jest widoczne z zewnątrz.
Żyją w kompletnej ciemności pod wodą. Nie mają naturalnych wrogów. I nie są zbyt ruchliwe. Gdy naukowcy z Budapesztu oznakowali grupę tych zwierząt i śledzili ruchy każdego z osobników dowiedzieli się, że przez ponad 10 lat każdy z odmieńców przemieszcza się średnio o 10 metrów. Wydaje się, że jedną z niewielu rzeczy, zdolnych do zmuszenia odmieńca do ruchu jest poszukiwanie partnera. Salamandry kopulują jednak średnio raz na 12,5 roku.
Jednak nawet wśród nich zdarzają się rekordziści bezruchu. Jedna z obserwowanych salamander pozostawała w tym samym miejscu przez 2569 dni. To ponad 7 lat bezruchu!
« powrót do artykułu -
przez KopalniaWiedzy.pl
Polatuchy czy płazy potrafiące przemieszczać się lotem ślizgowym, mrówki i wiele owadów żyjących na drzewach są w stanie wykonywać w powietrzu manewry, chroniące je przed upadkiem na ziemię. Jednak mistrzem wśród nich wydaje się salamandra, która całe życie spędza w koronach najwyższych drzew na świecie, kalifornijskich sekwoi wiecznozielonych. To, co naukowcy zobaczyli w tunelu aerodynamicznym przeszło ich najśmielsze oczekiwania.
Mają wyjątkową kontrolę nad procesem opadania. Są w stanie skręcać, obrócić się, jeśli znajdą się do góry nogami. Potrafią utrzymać odpowiednią postawę, przemieszczać ogon w górę i w dół, by wykonywać manewry. Poziom kontroli jest niesamowity, mówi doktorant Christian Brown z University of South Florida. O niezwykłych możliwościach salamandry z gatunku Aneides vagrans uczeni przekonali się podczas badań w tunelu aerodynamicznym na Uniwersytecie Kalifornijskim w Berkeley.
Salamandry zrzucano z niewielkiej wysokości w poruszającej się do góry kolumnie powietrza. O ile gatunki, które nie żyły na drzewach po prostu bezradnie opadały na siatkę zabezpieczającą, co, czego dokonywały Aneides vagrans było zadziwiające.
Gdy zobaczyłem nagrania, najbardziej rzuciło mi się w oczy, że salamandry płynnie poruszały się w powietrzu. W ich ruchach nie było żadnych zakłóceń, żadnych zgrzytów, po prostu płynęły. Moim zdaniem, to dowód, jak głęboko w ich motoryce jest zakodowany ten mechanizm. To pokazuje, że przypadki spadania muszą mieć miejsce dość często, więc nastąpiła presja selektywna. I to nie jest swobodne opadanie, one nie lecą po prostu w dół. Wyraźnie przemieszczają się w poziomie, szybują, mówi profesor Robert Dudley, ekspert od latania zwierząt.
To zachowanie jest tym bardziej zaskakujące, że Aneides vagrans nie różnią się wyglądem od innych salamander. Mają jedynie nieco większe łapy. Salamandry te mają duże łapy, długie nogi i ruchome ogony. Te wszystkie elementy pozwalają im manewrować w powietrzu. Dotychczas jednak sądzono, że te części ciała służą im jedynie do wspinania się. Jak się okazuje, mają one podwójną funkcję. Służą i do sprawnego wspinania i do manewrowania w powietrzu, dodaje Brown.
U salamander brak jest oczywistych cech anatomicznych – jak np. dodatkowe fałdy skórne – które mogłyby im pomagać w poruszaniu się w powietrzu. Nie są też postrzegane jako zwierzęta o wybitnym refleksie. Tymczasem manewrowanie w powietrzu wymaga szybkich reakcji na zmieniającą się sytuację oraz umiejętności odpowiedniego ustawienia ciała i trafienia w cel. Dlatego też naukowcy chcieliby się lepiej przyjrzeć nie tylko niezwykłym umiejętnościom salamander, ale sprawdzić też czy inne zwierzęta – których o to nie podejrzewamy – mają podobne umiejętności.
Podczas swoich eksperymentów Brown i student Erik Sathe z UC Berkeley porównywali umiejętności A. vagrans z trzema innymi gatunkami salamander, które w różnym stopniu korzystają z drzew. A. vagrans, która prawdopodobnie nigdy nie schodzi na ziemię, okazała się najlepszym lotnikiem. Niemal równie dobrymi umiejętnościami charakteryzowała się A. lubugris, która żyje na znacznie niższych drzewach, jak np. dęby. Dwa inne gatunki – żyjąca na ziemi Ensatina eschscholtzii oraz okazjonalnie wchodząca na drzewa A. flavipunctatus – bezradnie spadały na ziemię.
Brown rozpoczął swoje badania, gdy zauważył, że salamandry, które łapał na drzewach w ramach innego projektu badawczego, bez obaw wyskakiwały z jego dłoni i lądowały z powrotem na gałęziach. Zdziwiło go to ryzykanckie zachowanie. Brown skonsultował się z Dudleyem, specjalistą od podobnego zachowania u zwierząt, a ten poradził mu przeprowadzenie badań w tunelu aerodynamicznym. Tam, używając kamery rejestrującej 400 klatek na sekundę, naukowcy zarejestrowali niezwykłe umiejętności zwierząt. Czasami były one w stanie utrzymać się w powietrzu przez 10 sekund.
Brown uważa, że niezwykłe umiejętności zostały wykształcone jako ochrona przed spadnięciem na ziemię, ale salamandry zaczęły je wykorzystywać w swoim codziennym życiu. Wspinaczka po drzewie jest dla tych niewielkich zwierząt bardzo wyczerpująca. Ale schodzenie w dół, gdy w górze nie ma niczego do zjedzenia, jest jeszcze bardziej męczące. Salamandry celowo więc odpadają od gałęzi i opadają niżej, tam, gdzie jest pożywienie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Handel dzikimi zwierzętami to jedna z przyczyn utraty bioróżnorodności. Jednak do społecznej świadomości dociera tylko część problemu. O wielu gatunkach, które są przedmiotem handlu, w ogóle się nie mówi. Bardzo często dotyczy to bezkręgowców. Dlatego naukowcy z Tajlandii, Chin i Finlandii postanowili zbadać skalę handlu pajęczakami.
Uczeni przyjrzeli się umieszczanym w internecie ogłoszeniem dotyczącym sprzedaży tych zwierząt. Okazało się, że ludzie handlują co najmniej 1264 gatunkami pajęczaków. Co najmniej, gdyż problem jest z pewnością większy. Naukowcy nie śledzili bowiem ogłoszeń w mediach społecznościowych.
Te 1264 gatunki należą do 66 rodzin i 371 rodzajów. Przedmiotem handlu są miliony pajęczaków, a 67% z nich jest odławianych ze środowiska naturalnego. Co gorsza, handel większością z tych gatunków nie jest w żaden sposób regulowany, zatem jest w pełni legalny. Straty, jakie przynosi masowe odławianie pajęczaków ze środowiska naturalnego są trudne do określenia. O tym, jak wielki to problem, niech świadczy chociażby tak popularny wśród hodowców takson jak tarantule. Autorzy badań stwierdzili, że przedmiotem handlu jest 50% znanych gatunków, w tym 25% odkrytych od roku 2000. Tymczasem CITES, konwencja o międzynarodowym handlu dzikimi zwierzętami i roślinami, obejmuje zaledwie 30 gatunków tarantul, czyli jedynie 2% znanych.
Autorzy analizy zauważyli jeszcze jedno niezwykle niepokojące zjawisko. Wydaje się, że wyższe ceny osiągają pajęczaki, które są bardziej kolorowe. Generalnie rzecz biorąc, takie zwierzęta są rzadkie, a to oznacza, że odławianie ze środowiska rzadkich gatunków przynosi większe zyski. Więc tym bardziej handlarze skupiają się na nich. Jakby jeszcze tego było mało, te rzadkie gatunki to często takie, które długo żyją. A to kolejny czynnik, który może przyczynić się do ich zagłady.
Olbrzymia liczba zwierząt, które są przedmiotem handlu, sugeruje, że handel pajęczakami stanowi poważne zagrożenie dla przetrwania wielu gatunków, szczególnie takich, które i tak już są zagrożone z innych powodów, jak np. utrata habitatów.
Ze szczegółami badań można zapoznać się na łamach Nature.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Firma World View Enterprises z Arizony poinformowała o udanym teście balonu, który będzie wynosił turystów na wysokość 32 kilometrów nad Ziemią. Przedsiębiorstwo wykorzystuje balon podobnego typu, który w 2012 roku pozwolił Feliksowi Baumgartnerowi na wykonanie skoku z największej wysokości w dziejach.
Dyrektor wykonawcza World View Enterprises, Jane Poynter, powiedziała, że ubiegłotygodniowy test był pierwszą próbą wszystkich komponentów połączonych w jedną całość. W czasie testu wykorzystano balon trzykrotnie mniejszy niż ten, który będzie wynosił turystów. Był on obciążony ładunkiem 10-krotnie mniejszym niż kapsuła z turystami.
Pierwsze komercyjne loty balonu mają rozpocząć się w 2016 roku, a bilet na lot będzie kosztował 75 000 USD. Podczepiona pod balon kapsuła zabierze sześciu turystów i dwóch członków załogi. Przez dwie godziny będą oni znajdowali się na wysokości 32 kilometrów. Kapsuła będzie na tyle duża, że pozwoli pasażerom na spacerowanie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Trzmiel nie powinien latać, ale o tym nie wie, i lata, Lot trzmiela przeczy prawom fizyki. Setki tysięcy trafień w wyszukiwarkach, rozpaleni komentatorzy i teorie spiskowe, posiłkujące się tym mitem pokazują, jak bardzo trwałe potrafią być niektóre fałszywe przekonania. Bo przecież niemal każdy z nas słyszał, że zgodnie z prawami fizyki trzmiel latać nie powinien i każdy z nas widział, że jednak lata. Naukowcy najwyraźniej coś przed nami ukrywają lub coś nie tak jest z fizyką. A może coś nie tak jest z przekonaniem o niemożności lotu trzmiela?
Obecnie trudno dociec, skąd wziął się ten mit. Jednak z pewnością możemy stwierdzić, że swój udział w jego powstaniu miał francuski entomolog Antoine Magnan. We wstępie do swojej książki La Locomotion chez les animaux. I : le Vol des insectes z 1934 roku napisał: zachęcony tym, co robione jest w lotnictwie, zastosowałem prawa dotyczące oporu powietrza do owadów i, wspólnie z panem Sainte-Lague, doszliśmy do wniosku, że lot owadów jest niemożliwością. Wspomniany tutaj André Sainte-Laguë był matematykiem i wykonywał obliczenia dla Magnana. Warto tutaj zauważyć, że Magnan pisze o niemożności lotu wszystkich owadów. W jaki sposób w popularnym micie zrezygnowano z owadów i pozostawiono tylko trzmiele?
Według niektórych źródeł opowieść o trzmielu, który przeczy prawom fizyki krążyła w latach 30. ubiegłego wieku wśród studentów niemieckich uczelni technicznych, w tym w kręgu uczniów Ludwiga Prandtla, fizyka niezwykle zasłużonego w badaniach nad fizyką cieczy i aerodynamiką. Wspomina się też o „winie” Jakoba Ackereta, szwajcarskiego inżyniera lotnictwa, jednego z najwybitniejszych XX-wiecznych ekspertów od awiacji. Jednym ze studentów Ackerta był zresztą słynny Wernher von Braun.
Niezależnie od tego, w jaki sposób mit się rozwijał, przyznać trzeba, że Magnan miałby rację, gdyby trzmiel był samolotem. Jednak trzmiel samolotem nie jest, lata, a jego lot nie przeczy żadnym prawom fizyki. Na usprawiedliwienie wybitnych uczonych można dodać, że niemal 100 lat temu posługiwali się bardzo uproszczonymi modelami skrzydła owadów i jego pracy. Konwencjonalne prawa aerodynamiki, używane do samolotów o nieruchomych skrzydłach, rzeczywiście nie są wystarczające, by wyjaśnić lot owadów. Tym bardziej, że Sainte-Laguë przyjął uproszczony model owadziego skrzydła. Tymczasem ich skrzydła nie są ani płaskie, ani gładkie, ani nie mają kształtu profilu lotniczego. Nasza wiedza o locie owadów znacząco się zwiększyła w ciągu ostatnich 50 lat, a to głównie za sprawą rozwoju superszybkiej fotografii oraz technik obliczeniowych. Szczegóły lotu trzmieli poznaliśmy zaś w ostatnich dekadach, co jednak nie świadczy o tym, że już wcześniej nie wiedziano, że trzmiel lata zgodnie z prawami fizyki.
Z opublikowanej w 2005 roku pracy Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight autorstwa naukowców z Kalifornijskiego Instytut Technologicznego (Caltech) oraz University of Nevada, dowiadujemy się, że większość owadów lata prawdopodobnie dzięki temu, iż na krawędzi natarcia ich skrzydeł tworzą się wiry. Pozostają one „uczepione” do skrzydeł, generując siłę nośną niezbędną do lotu. U tych gatunków, których lot udało się zbadać, amplituda uderzeń skrzydłami była duża, a większość siły nośnej było generowanej w połowie uderzenia.
Natomiast w przypadku pszczół, a trzmiele są pszczołami, wygląda to nieco inaczej. Autorzy badań wykazali, że pszczoła miodna charakteryzuje się dość niewielką amplitudą, ale dużą częstotliwością uderzeń skrzydłami. W ciągu sekundy jest tych uderzeń aż 230. Dodatkowo, pszczoła nie uderza skrzydłami w górę i w dół. Jej skrzydła poruszają się tak, jakby ich końcówki rysowały symbol nieskończoności. Te szybkie obroty skrzydeł generują dodatkową siłę nośną, a to kompensuje pszczołom mniejszą amplitudę ruchu skrzydłami.
Obrany przez pszczoły sposób latania nie wydaje się zbyt efektywny. Muszą one bowiem uderzać skrzydłami z dużą częstotliwością w porównaniu do rozmiarów ich ciała. Jeśli przyjrzymy się ptakom, zauważymy, że generalnie, rzecz biorąc, mniejsze ptaki uderzają skrzydłami częściej, niż większe. Tymczasem pszczoły, ze swoją częstotliwością 230 uderzeń na sekundę muszą namachać się więcej, niż znacznie mniejsza muszka owocówka, uderzająca skrzydłami „zaledwie” 200 razy na sekundę. Jednak amplituda ruchu skrzydeł owocówki jest znacznie większa, niż u pszczoły. Więc musi się ona mniej napracować, by latać.
Pszczoły najwyraźniej „wiedzą” o korzyściach wynikających z dużej amplitudy ruchu skrzydeł. Kiedy bowiem naukowcy zastąpili standardowe powietrze (ok. 20% tlenu, ok. 80% azotu) rzadszą mieszaniną ok. 20% tlenu i ok. 80% helu, w której do latania potrzebna jest większa siła nośna, pszczoły utrzymały częstotliwość ruchu skrzydeł, ale znacznie zwiększyły amplitudę.
Naukowcy z Caltechu i University of Nevada przyznają, że nie wiedzą, jakie jest ekologiczne, fizjologiczne i ekologiczne znaczenie pojawienia się u pszczół ruchu skrzydeł o małej amplitudzie. Przypuszczają, że może mieć to coś wspólnego ze specjalizacją w kierunku lotu z dużym obciążeniem – pamiętajmy, że pszczoły potrafią nosić bardzo dużo pyłku – lub też z fizjologicznymi ograniczeniami w budowie ich mięśni. W świecie naukowym pojawiają się też głosy mówiące o poświęceniu efektywności lotu na rzecz manewrowości i precyzji.
Niezależnie jednak od tego, czego jeszcze nie wiemy, wiemy na pewno, że pszczoły – w tym trzmiele – latają zgodnie z prawami fizyki, a mit o ich rzekomym łamaniu pochodzi sprzed około 100 lat i czas najwyższy odłożyć go do lamusa.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.