Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Diesel o zapachu pomarańczy czy eukaliptusa
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Współczesne samoloty pasażerskie emitują mniej węgla niż starsze modele, jednak latają na większych wysokościach, przez co ich smugi kondensacyjne utrzymują się dłużej, a to może w większym stopniu wpływać na ocieplenie klimatu. Nowe badania, przeprowadzone przez naukowców z Wielkiej Brytanii, Niemiec i USA, wykazały również, że prywatne odrzutowce mają nawet większy negatywny wpływ na klimat, niż dotychczas sądzono.
Podczas podróży lotniczych do atmosfery emitowane są duże ilości węgla. I właśnie z tą emisją kojarzony jest negatywny wpływ lotów pasażerskich na klimat. Niewykluczone jednak, że to nie ona, a smugi kondensacyjne są głównym elementem, za pomocą którego samoloty przyczyniają się do ocieplania klimatu. Smugi kondensacyjne przyczyniają się do ponad połowy dodatniego wymuszenia radiacyjnego z lotnictwa, jednak rozmiary ich wpływu na klimat są wysoce niepewne. W dużym stopniu zależą bowiem od mikrofizycznych właściwości smugi oraz lokalnej meteorologii, ponadto silnie zmieniają się w czasie trwania smugi, piszą autorzy badań.
Naukowcy przeanalizowali zdjęcia satelitarne ponad 64 000 smug kondensacyjnych z samolotów przelatujących nad Oceanem Atlantyckim. Stwierdzili, że nowoczesne maszyny, które latają na wysokości około 12 kilometrów, tworzą bardziej trwałe smugi. Maszyny takie, by zaoszczędzić na paliwie, latają wyżej, gdzie powietrze jest bardziej rozrzedzone i stawia mniejszy opór. Starsze samoloty latają na wysokości około 11 kilometrów. Maszyny latające wyżej spalają mniej paliwa, powodują więc mniejszą emisję, jednak pozostawiane przez nich smugi kondensacyjne dłużej się utrzymują, więc dłużej generują efekt cieplarniany.
Nowsze samoloty latają coraz wyżej i wyżej, by zmniejszyć zużycie paliwa i emisję węgla. Niezamierzoną konsekwencją takich działań jest tworzenie większej liczby dłużej utrzymujących się w powietrzu smug kondensacyjnych, które zatrzymują w atmosferze dodatkowe ciepło, wyjaśnia główny autor badań, doktor Edward Gryspeerdt z Imperial College London. Badacze potwierdzili również, że istnieje prosty sposób na skrócenie czasu utrzymywania się smug kondensacyjnych. Jest nim zmniejszenie ilości sadzy emitowanej przez silniki, czyli dokładniejsze spalanie paliwa.
Nieproporcjonalnie dużym problemem są prywatne odrzutowce. Są co prawda mniejsze niż samoloty pasażerskie i zużywają mniej paliwa, jednak latają jeszcze wyżej. I mimo swoich rozmiarów generują długo utrzymujące się smugi kondensacyjne, które rozmiarami dorównują smugom z samolotów pasażerskich. Są też, oczywiście, mniej efektywne niż samoloty pasażerskie, emitując do atmosfery więcej węgla na osobę, niż duże maszyny należące do linii lotniczych. Negatywny wpływ na klimat milionerów posiadających prywatne odrzutowce jest więc jeszcze bardziej nieproporcjonalnie duży, niż się dotychczas wydawało.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Inżynierowie z NASA skonstruowali i przetestowali pierwszy pełnoskalowy silnik rakietowy z rotującą detonacją (RDRE – rotating detonation rocket engine). Tego typu napęd może być przyszłością lotów kosmicznych. Dzięki niemu bowiem rakiety będą lżejsze, mniej skomplikowane i zużyją mniej paliwa. Zaledwie trzy lata temu powstał matematyczny model takiego silnika oraz niewielki prototyp, co pozwoliło inżynierom na rozpoczęcie testów urządzenia.
Konwencjonalny silnik rakietowy uzyskuje ciąg dzięki spalaniu paliwa i wyrzucaniu go z tyłu. Silnik z rotującą detonacją składa się z koncentrycznych cylindrów, pomiędzy które wpływa paliwo. Zostaje ono tam zapalone. Dochodzi do gwałtownego uwolnienia ciepła w postaci fali uderzeniowej. Jest to silny impuls gazów o wysokiej temperaturze i ciśnieniu, które poruszają się szybciej od prędkości dźwięku. O ile w konwencjonalnych silnikach stosowane są liczne podzespoły odpowiedzialne za kierowanie i kontrolowanie reakcji spalania, to nie są one potrzebne w silnikach RDRE. Napędzana procesem spalania fala uderzeniowa w sposób naturalny przemieszcza się w komorze, zapalając kolejne porcje paliwa. To bardzo gwałtowny proces, w wyniku którego można uzyskać większy ciąg, zużywając przy tym mniej paliwa.
NASA poinformowała właśnie o wynikach ubiegłorocznego testu silnika RDRE. Został on uruchomiony kilkanaście razy i pracował w sumie przez 10 minut. Celem testu było sprawdzenie, czy poszczególne podzespoły są w stanie wytrzymać przez dłuższy czas ekstremalne temperatury i ciśnienie.
Podczas pracy z pełną mocą silnik przez niemal minutę wygenerował ciąg o mocy ok. 18 kN, czyli ok. 400 razy mniejszy niż ciąg F-1, najpotężniejszego w historii jednokomorowego silnika na paliwo płynne, który napędzał Saturna V, najpotężniejszą rakietę w dziejach. Średnie ciśnienie w komorze spalania wyniosło 4,2 MPa. To najwyższa wartość ciśnienia osiągnięta w tego typu silniku.
Udane testy RDRE pozwalają NASA myśleć o wykorzystaniu tej technologii w przyszłości. Obecnie inżynierowie pracują nad RDRE wielokrotnego użytku, który wygeneruje ciąg 44,5 kN. Posłuży on do testów porównujących tego typu konstrukcję z obecnie używanymi silnikami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dodanie nanocząstek do paliwa znacząco zmienia sposób jego spalania, informują naukowcy z Kanady. Sepher Mosadegh i jego zespół z University of British Columbia badają, w jaki sposób dodawanie w różnych warunkach nanocząstek tlenku grafenu przyspiesza rozbijanie paliwa na niewielkie kropelki. Ich odkrycie może doprowadzić do pojawienia się silników samolotowych, które będą nie tylko emitowały mniej węgla, ale będą miały też większą moc.
Już autorzy wcześniejszych badań wskazywali, że dodanie nanocząstek może usprawnić spalanie paliwa. Mosadegh wraz z kolegami badają ich wpływ na atomizację ciekłych paliw. W wyniku atomizacji pojawiaja się niewielkie kropelki, dzięki którym spalanie jest bardziej efektywne. Wciąż nie do końca rozumiemy, w jakim tempie dochodzi do atomizacji, ani jak wpływa ona na tempo spalania. Chcąc lepiej poznać ten ostatni proces, kanadyjscy uczeni wzbogacili etanol o trzy różne rodzaje nanocząstek tlenku grafenu. Każdy z nich utleniał się w różnym stopniu. Ponadto badano taką mieszankę przy różnej temperaturze paliwa, różnym stężeniu nanocząstek i różnej ich wielkości.
Po stworzeniu szeregu mieszanek paliwowych naukowcy wykorzystali spektroskopię w podczerwieni oraz ultraszybkie kamery, do badania procesów zachodzących w komorze spalania. Okazało się, że proces spalania można przyspieszyć, gdy koncentracja nanocząstek wynosi już 0,1%. Przy odpowiednim dobraniu właściwości samych nanocząstek i wywołaniu w ten sposób intensywnej atomizacji płynu, tempo spalania udało się zwiększyć nawet o 8,4%.
Naukowcy mówią, że może mieć to olbrzymie znaczenie w wielu miejscach, gdzie węglowodory używane są jako paliwo. Na przykład w silnikach samolotowych, które dzięki temu mogą mieć większą moc, emitując przy tym mniej węgla.
Szczegóły badań zostały opublikowane w piśmie Combustion and Flame.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na University of Bath powstał niezwykle lekki materiał, który może wyciszyć silniki samolotów i znacząco poprawić komfort pasażerów. To najlżejszy ze znanych materiałów izolujących, który może zmniejszyć hałas generowany przez silniki startujących odrzutowców do poziomu zbliżonego do hałasu generowanego przez... suszarkę do włosów.
Metr sześcienny aerożelu z tlenku grafenu i poli(alkoholu winylowego) waży zaledwie 2,1 kilograma, co czyni go najlżejszym kiedykolwiek wyprodukowanym materiałem izolującym. Jego twórcy zapewniają, że może on obniżyć hałas generowany przez silniki samolotu ze 105 do 89 decybeli, zatem do poziomu przeciętnej suszarki do włosów. Jednocześnie niemal nie wpływałby na wagę całego samolotu.
Obecnie naukowcy z Materials and Structures Centre (MAST) na Bath University pracują nad optymalizacją swojego aerożelu. Chcą, by lepiej rozpraszał on ciepło, co zmniejszy zużycie paliwa i poprawi bezpieczeństwo.
"To niezwykle interesujący materiał, który może znaleźć wiele zastosowań. Początkowo w przemyśle lotniczym i kosmicznym, ale potencjalnie również w samochodowym, transporcie morskim czy budownictwie", mówi profesor Michele Meo, który stał na czele zespołu badawczego. "Udało się nam wyprodukować tak lekki materiał dzięki połączeniu ciekłych tlenku grafenu i polimeru, które formowane są tak, by zamknąć wewnątrz bąble powietrza. Możemy porównać tę technikę z ubijaniem bezy. Otrzymujemy ciało stałe, zawierające dużo powietrza".
Twórcy nowego materiału oceniają, że może on trafić na rynek już za 18 miesięcy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z USA po raz pierwszy w historii doprowadzili do detonacji, w której fala pozostaje przez jakiś czas nieruchomo. Detonację taką przeprowadzono w prototypowym silniku, a naukowcy mają nadzieję, że tego typu system może w przyszłości posłużyć do rozpędzenia samolotu czy promu kosmicznego do prędkości nawet 17-krotnie przewyższającej prędkość dźwięku.
Większość wybuchów to deflagracje, podczas których materiał wybuchowy rozkłada się stosunkowo powoli, a sama fala takiego wybuchu rozprzestrzenia się znacznie wolniej niż prędkość dźwięku. To właśnie deflagracja jest obecnie wykorzystywana w transporcie. Z nią mamy do czynienia w silnikach spalinowych.
To jednak detonacja, czyli wybuch, w którym fala rozprzestrzenia się z prędkością ponaddźwiękową, dostarcza więcej energii i w sposób bardziej efektywny. Jednak takie intensywne uwalnianie się energii jest zjawiskiem niestabilnym i trudnym do kontrolowania. Jeśli jednak udałoby się je opanować, mogłoby posłużyć np. do osiągania prędkości naddźwiękowych w lotach kosmicznych czy nawet podczas lotów międzykontynentalnych na Ziemi. Z obliczeń specjalistów wynika, że można by skonstruować silnik rozpędzający samolot do prędkości 6–17 machów.
Naukowcy z University of Central Florida i Naval Research Laboratory zaprezentowali silnik wykorzystujący detonację. Przed rokiem informowaliśmy, o innym typie takiego silnika – rotacyjnym silniku detonacyjnym.
Tym razem jest to silnik ze stabilną falą uderzeniową, która pozostaje w tej samej pozycji. Chcieliśmy uzyskać właściwą mieszankę detonacyjnych, przy właściwej prędkości i zamrozić ją w przestrzeni, mówi Kareem Ahmed.
Uczeni stworzyli prototypowy silnik o nazwie HyperReact (high-enthalpy hypersonic reacting facility). Podzielony jest on na trzy sekcje. W pierwszej, komorze mieszania, dochodzi do zapłonu mieszaniny wodoru i powietrza. Pojawia się gorące powietrze o wysokim ciśnieniu, które przepływa do kolejnej komory – dyszy konwergencji-dywergencji (CD). Gdy gorące powietrze tam trafia, dodawany jest strumień bardzo czystego wodoru. Kształt dyszy CD jest dobrany tak, by przyspieszać całą mieszankę do prędkości około 4,5 machów. W ostatniej komorze znajduje się rampa ustawiona pod kątem 30 stopni. Mieszanka z olbrzymią prędkością trafia na rampę, gdzie dochodzi do detonacji i wyrzucenia z duża prędkością spalin z tyłu silnika. Pojawia się też duże ciśnienie. Mamy wszystko, co trzeba, by wygenerować duży ciąg. A metoda jest też bardzo wydajna, gdyż spalane jest niemal 100% paliwa.
Naukowcy odkryli, że manipulując mieszkanką, temperaturą oraz przepływem powietrza w komorach, są w stanie wytworzyć na rampie falę uderzeniową, która pozostaje w miejscu przez około 3 sekundy.
Ahmed wyjaśnia, że napęd detonacyjny byłby znacznie bardziej efektywny niż napęd deflagracyjny. Osiągnięcie prędkości naddźwiękowych ma olbrzymie znacznie, gdyż obecnie nie dysponujemy systemami, które to potrafią. Jedyne, co obecnie nadaje nam prędkość naddźwiękową jest silnik rakietowy. To nie jest efektywne rozwiązanie. Gdyby było, loty w przestrzeni kosmicznej byłyby czymś powszechnym, a są niezwykle kosztowne. Pojazd kosmiczny napędzany takim silnikiem nie potrzebowałby rakiet nośnych, by opuścić Ziemię.
Teraz, gdy udowodniono, że możliwe jest stworzenie silnika z ukośną falą detonacyjną, uczeni chcą prowadzić eksperymenty z różnymi rodzajami paliwa i różną prędkością przemieszczania się mieszanki paliwowej. Mają nadzieję, że dzięki temu określą parametry, przy których detonacja jest stabilna i możliwa do kontrolowania. Tyko wówczas można będzie tego typu silnik zastosować w praktyce.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.