Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Ewolucja kojarzy się nam zwykle z procesem trwającym tysiące i miliony lat. Wiemy jednak, że potrafi przebiegać znacznie szybciej. Jednym z przykładów ewolucji, która miała miejsce w czasie krótszym niż 100 lat jest historia pstrąga tęczowego.
W latach 90. XIX wieku amerykańscy rybacy wypuścili do Jeziora Michigan pstrągi tęczowe złapane w oceanie u wybrzeży Kalifornii. Przykład ten pokazuje, jak szybko zwierzęta potrafią dostosować się do nowych warunków, jeśli mają odpowiednie geny.

Pstrąg tęczowy (Oncorhynchus mykiss) żyje w wodzie słodkiej i słonej. Odmiana osiadła żyje w rzekach, a odmiana wędrowna, zwana w Ameryce steelhead, migruje pomiędzy rzekami a morzem. Do Jeziora Michigan trafiła odmiana wędrowna, która większość swojego dorosłego życia spędza w oceanie. Okazało się jednak, że szybko zaadaptowała się ona do życia wyłącznie w słodkiej wodzie i w czasie krótszym niż 100 lat u ryb pojawiły się geny, dzięki którym nie musi ona przebywać w wodach słonych.

Biolog Mark Christie z Purdue University postanowił sprawdzić, jak to się stało, że zwierzę w tak krótkim czasie potrafiło się dostosować. Wraz z Janną Willoughby przeanalizował genomy 264 pstrągów steelhead. Część ryb pochodziła z tych samych wód wokół Kalifornii, w których zostały złapane pstrągi wypuszczone do Jeziora Michigan, a część pochodziła z Jeziora Michigan, w którym została złowiona w latach 1983-1998. Naukowcy wzięli się za porównywanie genomów ryb.

Początki pstrąga w Jeziorze Michigan nie były łatwe. Ryby tysiącami padały. Jednak te nieliczne, które przetrwały, zaczęły się rozmnażać. W latach 1983-1998 liczebność pstrągów szybko rosła, a gatunek zaczął się nawet różnicować. Zdaniem Willoughby i Christiego za różnicowanie odpowiada łączenie się pstrągów z Jeziora z pstrągami, które uciekły z hodowli.

Naukowcy zauważyli też trzy regiony DNA, w których występują różnice genetyczne pomiędzy pstrągami złowionymi obecnie w pobliżu Kalifornii, a tymi z Jeziora Michigan. Dwa z tych regionów zawierają geny odpowiadające za utrzymanie równowagi soli w organizmie zwierzęcia. Ryby słodkowodne muszą bowiem przyjmować dodatkową sól, a słonowodne muszą się pozbywać nadmiaru soli. Muszą więc mieć różne wersje genów. Trzeci ze wspomnianych regionów DNA wydaje się odpowiadać za gojenie się ran. Niewykluczone, że zmiany w tym regionie pomagają pstrągom radzić sobie z ranami zadawanymi przez pasożytnicze minogi, których pełno w wodach słodkich.

Pozostaje więc pytanie, jak to się stało, że w ciągu kilkudziesięciu lat geny ryb zmieniły się z jednej z wersji w inną. Nie ma żadnych śladów, które wskazywałyby, że pstrągi złowione u wybrzeży Kalifornii i wypuszczone do Jeziora krzyżowały się z odmianą osiadłą, słodkowodną. Nie ma też śladu mutacji genów. Naukowcy wyjaśniają, że prawdopodobnie wśród ryb wypuszczony do Jeziora Michigan były takie, które już posiadały odpowiednie wersje genów. To one przetrwały i się rozmnożyły. Gorzej zaadaptowane pstrągi z czasem wyginęły.

Felicity Jones, biolog ewolucyjna z Laboratorium Friedricha Mieschera Towarzystwa Maksa Plancka mówi, że konieczne są dalsze badania, by dowieść, że zmiany zaszły w odpowiedzi na zmiany środowiskowe, a nie były czystym przypadkiem. Sama Jones również odkryła, że jeden z gatunków ciernikowatych zmienił środowisko ze słono- na słodkowodne. Uczona nie wyklucza, że takich przypadków może myć więcej.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Państwowego Instytutu Geologicznego-Państwowego Instytutu Badawczego i Uniwersytetu Jagiellońskiego dokonali przełomowego odkrycia, zmieniającego pogląd nauki na ewolucję kręgowców lądowych. W Górach Świętokrzyskich znaleźli najstarsze ślady poruszania się kręgowców na lądzie. Ślady pochodzą sprzed ponad 400 milionów lat i dowodzą, że pierwszymi kręgowcami, które próbowały wyjść na ląd, były ryby dwudyszne. Ta próba zasiedlenia nowego środowiska miała miejsce 10 milionów lat przed wyjściem na ląd terapodów – ostatecznych zwycięzców wyścigu o poruszanie się suchą stopą.
      Piotr Szrek, Katarzyna Grygorczyk, Sylwester Salwa, Patrycja Dworczak i Alfred Uchman znaleźli skamieniałe ślady, które nazwali Reptanichnus acutori czyli „Czołgający się pionier”. Całość terminologii naukowej brzmi Reptanichnus acutori igen. et isp. nov., gdzie „Reptanichus” to nazwa nowego ichnorodzaju, czyli rodzaju wyznaczonego na podstawie śladów kopalnych, a nie skamieniałych szczątków zwierzęcia; „acutori” to nazwa gatunku, a zapis „igen. et isp. nov.” oznacza nowy ichnorodzaj i nowy ichnogatunek.
      Ślad składa się z elementów o różnej morfologii. Badacze zidentyfikowali odciski płetw, tułowia, ogona i pyska, którym zwierzę podpierało się, by podciągnąć resztę ciała. Analiza śladów przyniosła dodatkowe sensacyjne odkrycie. Okazało się, że wędrujące po lądzie ryby niemal zawsze podpierały się pyskiem, przechylając głowę na lewą stronę. To sugeruje dominację prawej półkuli mózgu i jest najstarszym dowodem na lateralizację u kręgowców. Może to też oznaczać, że preferencja dla lewej strony, która u ludzi została wyparta przez praworęczność, pojawiła się ewolucyjnie wcześniej.
      Niezwykłe ślady najpierw zauważono w murach słynnego zamku Krzyżtopór. Wówczas naukowcy rozpoczęli badania w regionie i odkryli kolejne ślady w niewielkim opuszczonym kamieniołomie we wsi Ujazd.
      Interpretację odnośnie powstania skamieniałości potwierdzają eksperymenty ze współcześnie żyjącymi rybami dwudysznymi z Afryki. Pozostawiają one niemal identyczne ślady.
      Więcej na temat badań przeczytasz w artykule Traces of dipnoan fish document the earliest adaptations of vertebrates to move on land.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W VII wieku na dwóch różnych cmentarzach na południu Wielkiej Brytanii pochowano dwie niespokrewnione ze sobą osoby, których przodkowie pochodzili z Afryki Subsaharyjskiej. Obie zostały pochowane tak jak wszyscy inni zmarli, co dowodzi, że osoby te nie były niewolnikami, a równorzędnymi członkami swoich społeczności. Jedną ze wspomnianych osób jest dziewczynka w wieku 11-13 lat, która spoczęła na cmentarzu w Updown w Kent. Drugą młody mężczyzna w wieku 17–25 lat pochowany w Worth Matravers.
      Prace archeologiczne na anglosaskim cmentarzu w Updown prowadzone są od połowy lat 70. ubiegłego wieku. Dotychczas odkryto tam 78 pochówków, głównie z VII wieku. W grobach znaleziono ozdoby ubrań, broń, przedmioty osobiste, w tym pochodzenia frankijskiego czy nietypową bizantyjską sprzączkę, która była zabytkiem już w chwili złożenia jej do grobu.
      Cmentarz w Worth Matravers zawiera zaś 21 grobów, w których pochowano 26 osób. Początkowo uważano, że pochodzi z czasów rzymskich, jednak bardziej szczegółowe badania wskazały na epokę anglosaską. Jedynymi znalezionymi tutaj artefaktami są sprzączka przy miednicy dorosłej kobiety oraz prawdopodobnie kamienna kotwica, ułożona pod głową jednego ze zmarłych.
      Badania genetyczne dziewczynki z Updown wykazały, że jej afrykańskie geny pochodziły z linii ojca. U dziecka znaleziono komponent genetyczny z Czarnej Afryki, największe zaś powinowactwo wykazano w stosunku do dzisiejszych zachodnioafrykańskich ludów Joruba, Mende, Mandinka i Esan zamieszkujące regiony od Mali po Ghanę i od Senegalu po Nigerię. Z obszaru tego najprawdopodobniej pochodził dziadek dziewczynki.
      Na cmentarzu w Updown znaleziono kilkoro jej krewnych od strony matki: babkę, ciotkę oraz pradziadka. U pradziadka znaleziono komponent genetyczny charakterystyczny dla południowej Italii, Bałkanów i Grecji. Jednak żadne z krewnych dziewczynki nie było spokrewnione z mieszkańcami Afryki. To dodatkowo potwierdza, że subsaharyjski komponent genetyczny pochodzi u niej z linii ojca. Na cmentarzu z Updown badaniom genetycznym poddano jedynie kilka grobów i dotychczas nie znaleziono żadnych krewnych dziewczynki od strony ojca.
      Cmentarz w Updown to jeden z grupy anglosaskich cmentarzy we wschodniej części hrabstwa Kent. Znajduje się on w odległości kilku kilometrów od dużego cmentarza w Finglesham. Nazwa tej miejscowości pochodzi od staroangielskiego Þengelshām oznaczającego „siedzibę księcia”. Dostępne źródła wskazują, że już w VI wieku znajdował się tam jeden z głównych ośrodków władzy królewskiej. W VII wieku powstawały tam kodeksy prawne Kentu. Przepisy dotyczące żon, wdów, rozwódek czy ich dzieci pokazują, że podstawą tożsamości społecznej był patrylinearny system pokrewieństwa. Pochowanie dziewczynki na cmentarzu w pobliżu ośrodka królewskiego wskazuje, że jej ojciec, a może i dalsi przodkowie od strony ojca, był znany w tutejszej społeczności.
      U młodego mężczyzny z cmentarza w Worth Matravers afrykański komponent genetyczny wynosił – podobnie jak i u dziewczynki – od 20 do 40 procent. Nie byli oni jednak ze sobą spokrewnieni. Dotychczas też nie zidentyfikowano żadnych krewnych mężczyzny, a badania pokazały, że u niego do domieszki genów z zachodu Afryki doszło prawdopodobnie dwa pokolenia wcześniej. Mężczyzna spoczął w podwójnym grobie, wraz ze wspomnianym wcześniej – niespokrewnionym – mężczyzną, pod którego głową umieszczono kamienną kotwicę. Pochówek wraz z innym członkiem społeczności wskazuje, że był on w pełni akceptowany, traktowany jak swój.
      Znalezienie we wczesnośredniowiecznych anglosaskich pochówkach osób z dużym genetycznym komponentem z Afryki to ciekawostka, ale nie zaskoczenie. Ze źródeł historycznych i wykopalisk wiemy o kontaktach między Afryką a Wyspami Brytyjskimi.
      W skompilowanym ok. 1000 roku  manuskrypcie Junius 11, jednym z czterech najważniejszych kodeksów literatury staroangielskiej, znajduje się poemat Exodus, w którym opisano kobiety z Afryki. W Lincolnshire znaleziono kość słoniową z VI wieku, która pochodzi z Afryki, a afrykańskie kościoły odegrały ważną rolę w rozprzestrzenianiu się chrześcijaństwa. Teodor z Tarsu został arcybiskupem Canterbury (668–690) z rekomendacji opata Hadriana (Adriana), który – według Bedy Czcigodnego – był z pochodzenia Berberem. Sam Hadrian został później opatem w Opactwie św. Augustyna w Canterbury i wraz z Teodorem odegrał znaczącą rolę w organizacji anglosaskiego kościoła i chrystianizacji Wysp.
      Musimy pamiętać, że kontakty te nie wzięły się znikąd. Północnoafrykańskie prowincje były niezwykle ważnymi regionami Imperium Romanum, szczególnie jako źródła zboża i oliwy. W Mauretanii i Numidii Rzym rekrutował żołnierzy. Jednak wiedza Rzymian i Greków o Afryce – z wyjątkiem Doliny Nilu i okolic Morza Czerwonego – była ograniczona głównie do wybrzeży Morza Śródziemnego. Wiedzieli też co nieco o dalszych regionach. W V wieku p.n.e. Herodot wspominał o Saharze i mieszkających za nią „Etiopach”, w połowie I wieku Pliniusz Starszy wie już o rzece Niger, a 250 lat później Gajusz Juliusz Solinus opisuje afrykańskie zwierzęta i stwierdza, że Niger wpada do Nilu. Niektórzy historycy uważają, że złote monety wybijane w rzymskiej Kartaginie pochodziły z kruszcu transportowanego przez Saharę z Czarnej Afryki. Na pewno zaś w VII/VIII wieku powstawały rozległe sieci handlowe na Saharze. Nie możemy przy tym zapomnieć o północnoafrykańskim państwie Wandalów, które prowadziło handel między północną Afryką a Europą, czy o jego podboju w VI wieku przez Bizancjum.
      Badania pochówków zostały opisane w artykule West African ancestry in seventh-century England: two individuals from Kent and Dorset.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na Grzbiecie Wschodniopacyficznym, między Alaską a Kalifornią, naukowcy odkryli trzy nieznane wcześniej gatunki kikutnic (pająków morskich) napędzanych... metanem.
      Zwierzęta żyjące przy miejscach wysięków metanu na dnie morskim wypracowały niezwykłe partnerstwo z licznymi gatunkami bakterii żywiących się metanem. Kikutnice z rodzaju Sericosura (rodzina Amotheidae) zapewniają bakteriom miejsce do życia na swoim egzoszkielecie, hodują bakterie i je zjadają. Szczegółowe analizy tkanek kikutnic wykazały, że w ich skład wchodzi węgiel pochodzący z metanu.
      Rodzaj Sericosura jest znajdowany wyłącznie w habitatach chemosyntetycznych, takich jak okolice kominów hydrotermalnych, zimnych wysięków z dna morskiego, czy miejsc, w które opadły ciała waleni. Chemosynteza jest prostszym od fotosyntezy i starszym ewolucyjnie sposobem autotrofizmu (samożywności). 
      Chemosyntezę przeprowadzają bakterie. Jak widzimy, często stanowią one źródło pożywienia dla kolejnych organizmów. W tym przypadku dla kikutnic. To niezwykle ważny proces, który zachodzi w ekosystemach głębinowych, gdzie fotosynteza jest niemożliwa.
      Mikrobiom egzoszkieletu kikutnic zawierał wiele taksonów bakterii, w tym trzy rodziny znane z powiązań ze zwierzętami. Były wśród nich Methylomonadaceae-MMG-2, które są symbiontami gąbek czy wieloszczetów, Methylomonadaceae-MMG-3 to symbionty omułkowatych, a Methylophilaceae są epibiontami skorupiaków żyjących przy kominach hydrotermalnych.
      Naukowcy przypuszczają, że żywiące się metanem bakterie kolonizują egzoszkielet kikutnic przechodząc z rodziców na potomstwo.
      Więcej o napędzanych metanem kikutnicach znajdziecie tutaj: https://www.pnas.org/doi/full/10.1073/pnas.2501422122

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wielkie wirusy mają istotne znaczenie dla ekosystemu mórz i oceanów poprzez ich oddziaływanie z glonami czy amebami, które znajdują się na dole morskiego łańcucha pokarmowego. Naukowcy z University of Miami odkryli 230 nowych, nieznanych dotychczas wielkich wirusów żyjących w morzach i oceanach. Odkrycia dokonali zaś za pomocą wysoko wydajnych metod obliczeniowych za pomocą których przeanalizowali publicznie dostępne bazy danych zawierających informacje o genach zidentyfikowanych w wodach na całym świecie.
      Wśród przeanalizowanych genomów naukowcy scharakteryzowali 530 nowych białek funkcyjnych, w tym 9 zaangażowanych w fotosyntezę. To wskazuje, że posiadające je wirusy są zdolne do manipulowania swoim gospodarzem i jego procesem fotosyntezy.
      Poprzez lepsze zrozumienie różnorodności i roli wielkich wirusów w oceanach, ich interakcji z glonami i innymi mikroorganizmami, możemy przewidywać szkodliwe zakwity glonów, które są zagrożeniem dla zdrowia ludzi na całym świecie, mówi współautor badań, profesor Mohammad Moniruzzaman. Wielkie wirusy są często główną przyczyną śmierci fitoplanktonu znajdującego się na dole łańcucha pokarmowego wspierającego systemy oceaniczne i źródła pożywienia. Nowo odkryte wirusy mogą mieć też potencjał biotechnologiczny, gdyż mogą wytwarzać nowe enzymy, dodaje uczony.
      Odkrycia dokonano dzięki nowatorskiemu narzędziu BEREN (Bioinformatic tool for Eukaryotic virus Recovery from Environmental metageNomes), zaprojektowanemu specjalnie pod kątem wykrywania wielkich wirusów w rozległych publicznych bazach danych. Naukowcy użyli przy pracy superkomputera Pegasus.
      Źródło: Expansion of the genomic and functional diversity of global ocean giant viruses

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hyceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Jeśli przyjmiemy, że planety hyceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hyceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hyceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hyceańskich. Właśnie zresztą na podstawie badań K2-18b.
      Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
      Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...