Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

MAE ostrzega przed upowszechnieniem klimatyzacji

Recommended Posts

Międzynarodowa Agencja Energetyczna (MAE) przestrzegła we wtorek przed niebezpieczeństwem powszechnego stosowania na świecie klimatyzacji i zaleciła stosowanie mniej energochłonnych urządzeń.

Jeśli nie dojdzie do interwencji, zapotrzebowanie na energię zużywaną przez klimatyzację wzrośnie ponad trzykrotnie do 2050 roku i wyniesie tyle samo, co obecne zapotrzebowanie Chin – podkreślił Fatih Birol, dyrektor wykonawczy MAE we wstępie do raportu na ten temat.

Liczba klimatyzatorów może osiągnąć 5,6 mld w 2050 roku w porównaniu z 1,6 mld obecnie użytkowanych. Oznacza to, że w najbliższych 30 latach co sekundę będzie kupowanych dziesięć takich urządzeń.

Według ekspertów MAE klimatyzatory i wentylatory już zużywają około 20 proc. energii wykorzystywanej obecnie w budynkach na świecie.

Duże zużycie energii elektrycznej przez klimatyzatory i wentylatory dotyczy zwłaszcza Stanów Zjednoczonych, Japonii i coraz bardziej Chin, ale wraz z rozwojem gospodarczym i demograficznym będzie rosło także w ciepłych krajach takich jak Indie.

Upowszechnienie dostępu do umiarkowanej temperatury otoczenia będzie mieć znaczący wpływ na globalne zapotrzebowanie energetyczne zainteresowanych tym krajów, wywierając presję na sieci energetyczne i zwiększając lokalnie i globalnie emisje (gazów cieplarnianych) – ostrzega raport.

Według MAE środkiem najpilniejszym i najłatwiejszym do wdrożenia jest zapewnienie, by wszystkie nowe klimatyzatory były o wiele bardziej energooszczędne. Mogłoby to zmniejszyć o połowę wzrost zapotrzebowania na energię elektryczną związany z klimatyzacją.

Nie wszystkie urządzenia są takie same: sprzedawane w Japonii i Unii Europejskiej są obecnie o 25 proc. bardziej wydajne niż sprzedawane w Stanach Zjednoczonych i Chinach.

Zapotrzebowanie na energię do klimatyzacji może nawet pozostać niezmienione, jeśli podjęte zostaną również działania mające na celu poprawę efektywności energetycznej budynków – ocenia Międzynarodowa Agencja Energetyczna


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      U.S. Nuclear Regulatory Commission (NRC) zatwierdziła projekt małego reaktora modułowego (SMR) firmy NuScale Power. To wielka chwila nie tylko dla NuScale, ale dla całego amerykańskiego sektora energetyki jądrowej, mówi dyrektor wykonawczy NuScale John Hopkins.
      Zwolennicy SMR od dawna mówią, że mogą stać się one realną alternatywą dla wielkich kosztownych elektrowni atomowych. Tym bardziej w czasach, gdy amerykańska energetyka jądrowa przeżywa kryzys spowodowany konkurencją ze strony gazu oraz energetyki odnawialnej.
      Zatwierdzenie projektu oraz związany z tym finalny raport oceny bezpieczeństwa (FSER) nie oznacza jeszcze, że NuScale może rozpocząć budowę małych reaktorów. Jednak pozwala to przedsiębiorstwom produkującym energię na składanie do NRC wniosków o pozwolenie na budowę i uruchomienie reaktora wykonanego według projektu NuScale. Co prawda USA pozostają największym na świecie producentem energii elektrycznej z elektrowni atomowych, jednak nowe reaktory powstałe po 1990 można policzyć na palcach jednej ręki. Obecnie trwa budowa 2 nowych reaktorów, budowę 2 innych wstrzymano. Jednocześnie na terenie USA są obecnie 23 wyłączone reaktory podlegające nadzorowi NRC, które znajdują się na różnych etapach likwidacji. W tej sytuacji pojawienie się małych reaktorów modułowych może ożywić ten rynek.
      NuScale rozwijało swój projekt dzięki pomocy Departamentu Energii, który sfinansował prace kwotą niemal 300 milionów USD. Reaktor ma moc 50 MW. To znacznie mniej niż obecnie stosowane duże reaktory, których może przekraczać 1000 MW. Reaktory NuScale można łączyć w grupy do 12 sztuk, co pozwala na osiągnięcie mocy do 600 MW, a to wystarczy do zasilenia miasta średniej wielkości. Ponadto sama NRC spodziewa się, że w roku 2022 NuScale poprosi o zatwierdzenie projektu 60-megawatowego reaktora.
      Przemysł jądrowy mówi, że SMR można budować szybciej i taniej niż standardowe reaktory. Główną zaletą małych reaktorów modułowych jest fakt, że można jest produkować w fabrykach i dostarczać na miejsce przeznaczenia. Standardowe reaktory budowane są na miejscu. Rozwiązanie takie jest bardziej elastyczne, gdyż odbiorca może zamawiać i łączyć ze sobą różną liczbę takich jednostek, w zależności od lokalnego zapotrzebowania.
      Zwolennicy SMR mówią, że to najlepsza możliwość szybkiego zbudowania infrastruktury potrzebnej do produkcji dużej ilości bezemisyjnej energii. Jej przeciwnicy zauważają, że wciąż pozostaje nierozwiązany problem radzenia sobie z odpadami, ponadto każda technologia wykorzystania energii jądrowej jest droga, a jej wdrożenie wymaga dużo czasu w porównaniu z energetyką odnawialną.
      NuScale wierzy jednak, że uda się jej uniknąć drożyzny i wieloletnich opóźnień, czyli problemów trapiących sektor tradycyjnej energetyki atomowej. Diana Hughes, wiceprezes firmy ds. marketingu twierdzi, że w latach 2023–2042 uda się sprzedać od 574 do 1682 SMR. Sprzedaż niemal 1700 reaktorów oznaczałaby, że uzyskiwano by z nich 80 GW, a to już blisko do obecnych 98 GW wytwarzanych przez amerykańską energetykę jądrową.
      Firma NuScale podpisała już umowy o możliwym rozpoczęciu współpracy z wieloma potencjalnymi partnerami z USA i zagranicy. Pierwszym projektem, który ma zostać zrealizowany jest umowa z Utah Associated Municipal Power Systems (UAMPS), organizacją, która dostarcza energię do niewielkich operatorów w kilku stanach. Pierwszy reaktor ma trafić do UAMPS w 2027, które realizuje zlecenie Idaho National Laboratory. Reaktor ma rozpocząć pracę w 2029 roku. Z kolei do roku 2030 ma zostać uruchomionych 11 połączonych ze sobą reaktorów, które będą wchodziły w skład 720-megawatowego projektu. Część energii z nich będzie kupował Departament Energii, reszta trafi do komercyjnych klientów UAMPS. Niektóre samorządy terytorialne, w obawie o wysokie koszty, wycofały się z tego projektu.
      Eksperci wyrażają powątpiewanie odnośnie bezpieczeństwa i kosztów NuScale SMR. Jednym z takich krytyków jest profesor M. V. Ramana, ekspert ds. energetyki atomowej z University of British Columbia. To, co oni planują jest ryzykowne i kosztowne, mówi uczony. Zauważa, że w ciągu ostatnich 5 lat szacunkowe koszty projektu realizowanego przez UAMPS wzrosły z około 3 do ponad 6 miliardów USD. Przypomina też, że początkowe plany NuScale mówiły, iż pierwszy SMR rozpocznie pracę w 2016 roku. Już w tej chwili wiemy, że opóźnienie przekroczy dekadę. Dobrze oddaje to problemy, z jakimi boryka się energetyka jądrowa. Ramana mówi, że cena energii produkowanej przez SMR może być dla konsumentów znacznie wyższa niż energii ze Słońca, wiatru czy innych źródeł odnawialnych.
      Pozostają też kwestie bezpieczeństwa. Jak przypomina Edwin Lyman z Union of Concerned Scientist, NuScale złożyło raport o bezpieczeństwie mimo zastrzeżeń wnoszonych zarówno przez ekspertów NRC jak i zewnętrznej komisji doradczej. W lipcu 2020 roku Shanlai Lu z NRC złożył raport, w którym opisywał problem znany jako rozcieńczenie boru, co może spowodować problemy z paliwem i doprowadzić do pojawienia się niebezpiecznej sytuacji. W jej wyniku, nawet jeśli zabezpieczenia zadziałają i reaktor zostanie wyłączony, reakcja może samodzielnie się rozpocząć i dojdzie do niebezpiecznego wzrostu mocy. W innym raporcie NRC’s Advisory Committee on Reactor Safeguards wspomina o innych ryzykach, ale rekomenduje NRC wydanie dokumentu o bezpieczeństwie. NRC zastrzega jednak, że te nierozwiązane kwestie będą podlegały ocenie na etapie wydawania zgody na budowę reaktorów w konkretnych miejscach. Pani Hughes zapewnia, że NRC i NuScale przyjrzały się problemowi rozcieńczania boru i uznały, iż projekt reaktora jest bezpieczny.
      NRC ponownie przyjrzy się projektowi, gdy NuScale złoży wniosek o zatwierdzenie 60-megawatowego reaktora.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu.
      W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie.
      O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University.
      Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej.
      Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu.
      Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model.
      Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      US Air Force zapowiedziały kolejną misję tajemniczego mini wahadłowca X-37B. Pojazd wystartuje 16 maja. Będzie to już jego szósty pobyt w przestrzeni kosmicznej. O wcześniejszych misjach nie wiemy praktycznie niczego, poza tym, że przeprowadzano podczas nich tajne testy. Tym razem Amerykanie uchylili jednak rąbka tajemnicy.
      Wiemy, że USA posiadają dwa mini-wahadłowce tego typu. Długość każdego z nich to 8,8 metra, a rozpiętość skrzydeł wynosi 4,6 metra. Duże wahadłowce miały długość 37 metrów, przy rozpiętości skrzydeł 24 metrów. Pierwszy start X-37B odbył się w kwietniu 2010 roku, a pojazd wrócił na Ziemię po 224 dniach. Kolejne misje były coraz dłuższe. Ostatnia, najdłuższa, odbyła się pomiędzy 7 września 2017 a 27 października 2019 roku. Trwała więc 779 dni. W czasie pierwszych czterech pojazd był wynoszony przez rakietę Atlas V, podczas ostatniej wykorzystano Falcona 9.
      Najbliższa misja, OTV-6, wystartuje na pokładzie Atlasa V. W ramach tej ważnej misji przeprowadzili więcej badań niż podczas którejkolwiek z wcześniejszych. Znajdą się wśród nich dwa eksperymenty NASA, poinformowała sekretarz US Air Force, Barbara Barrett. Wyjaśniła, że jeden z eksperymentów dla NASA będzie badał wpływ promieniowania kosmicznego na nasiona, a podczas drugiego zostanie sprawdzone zachowanie się różnych materiałów w przestrzeni kosmicznej.
      Znacznie bardziej interesująco wygląda inny eksperyment, który zostanie przeprowadzony na zlecenie U.S. Naval Research Laboratory. W jego ramach badana będzie technologia zamiany energii słonecznej na energię mikrofalową i jej transfer na Ziemię.
      Nie zdradzono przy tym żadnych szczegółów, jednak z wcześniejszych informacji napływających z Naval Research Laboratory wiemy, że z technologią taką wiązane są duże nadzieje,  Dzięki niej Amerykanie mogliby stworzyć drony pozostające w powietrzu przez bardzo długi czas, może nawet bezterminowo, gdyż otrzymywałyby energię z satelitów. Ponadto satelity byłyby zdolne do przekazywania energii w dowolne miejsce na Ziemi, ewentualnie do pojazdów kosmicznych czy innych satelitów.
      Dzięki takiej technologii jednostki wojskowe czy zespoły naukowe działające w odległych miejscach globu nie musiałyby polegać na mało wydajnej technologii fotowoltaicznej czy na ciężkich, hałaśliwych zużywających sporo paliwa generatorach. Wystarczyłoby urządzenie z anteną odbierającą mikrofale. Ta sama technologia przydałaby się w regionach katastrof, gdzie zapewniłaby energię na długo zanim możliwe byłoby odbudowanie infrastruktury.
      Przypomnijmy, że po powrocie (maj 2017) X-37B z misji OTV-4 przyznano, że w czasie misji testowano zaawansowane systemy nawigacyjne, kontrolne, napędowe, ochrony termicznej oraz systemy lotu autonomicznego, lądowania i wejścia w atmosferę. Zauważono też wówczas, że X-37B latał niezwykle nisko. Pojawiły się sugestie, że USA testują technologie pozwalające satelitom szpiegowskim na latanie nisko nad Ziemią. To pozwoliłoby na wykonywanie bardziej dokładnych zdjęć, ale wymagałoby znacznie więcej paliwa.
      Wiemy też, że w ramach OTV-6 z pokładu mini wahadłowca zostanie wypuszczony niewielki satelita FalconSat-8, który przeprowadzi pięć eksperymentów na potrzeby U.S. Air Force Academy.
      Nie wiemy za to, jak długo potrwa misja OTV-6.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do fotosyntezy potrzebne jest nie tylko światło, ale i ciepło - dowodzą naukowcy z Lublina. Rośliny odzyskują część ciepła, które powstaje w fotosyntezie, i używają go ponownie do zasilania reakcji napędzanych światłem, w tym – do produkcji tlenu – tłumaczy prof. Wiesław Gruszecki.
      Naukowcy mają nadzieję, że wiedzę dotyczącą gospodarowania strumieniami energii w aparacie fotosyntetycznym roślin uda się wykorzystać np. w rolnictwie, by zwiększyć plony.
      Energia niezbędna do podtrzymywania życia na Ziemi pochodzi z promieniowania słonecznego. Wykorzystanie tej energii możliwe jest dzięki fotosyntezie. W ramach fotosyntezy dochodzi do przetwarzania energii światła na energię wiązań chemicznych, która może być wykorzystana w reakcjach biochemicznych. W procesie tym rośliny rozkładają też wodę, wydzielając do atmosfery tlen, potrzebny nam do oddychania.
      Do tej pory sądzono, że w fotosyntezie rośliny korzystają tylko z kwantów światła. Zespół z Uniwersytetu Marii Curie-Skłodowskiej i Instytutu Agrofizyki PAN w Lublinie wskazał jednak dodatkowy mechanizm: do fotosyntezy potrzebna jest również energia cieplna, która - jak się wydawało - powstaje w tym procesie jako nieistotny skutek uboczny. Tymczasem z badań wynika, że ten „recykling energii” jest niezbędny w procesie wydajnego rozkładania wody do tlenu. Wyniki ukazały się w renomowanym czasopiśmie Journal of Physical Chemistry Letters.
      Wydajność energetyczna fotosyntezy jest niewielka – mówi w rozmowie z PAP prof. Wiesław Gruszecki z UMCS. Wyjaśnia, że roślina zamienia w biomasę najwyżej 6 proc. energii słonecznej, którą pobiera. Natomiast około 90 proc. energii pochłanianej ze światła jest oddawana do środowiska w postaci ciepła. Dotąd uważaliśmy, że frakcja oddawana do środowiska w postaci ciepła, z punktu widzenia wydajności energetycznej tego procesu, jest nieodwracalnie stracona. Ku naszemu zaskoczeniu okazało się jednak, że aparat fotosyntetyczny w roślinach jest na tyle sprytny, że potrafi jeszcze wykorzystywać część energii rozproszonej na ciepło – mówi.
      Naukowiec podkreśla, że są to badania podstawowe. Jego zdaniem mają one jednak szansę znaleźć zastosowanie choćby w rolnictwie.
      Jeśli procesy produkcji żywności się nie zmienią, to w połowie XXI wieku, kiedy Ziemię może zamieszkiwać nawet ponad 9 mld ludzi, nie starczy dla wszystkich jedzenia, tym bardziej przy niepokojących zmianach klimatycznych – alarmuje naukowiec. Badania jego zespołu są częścią międzynarodowych działań naukowców. Badają oni, co reguluje przepływy i wiązanie energii w procesie fotosyntezy. W powszechnym przekonaniu wiedza ta umożliwi inżynierię bądź selekcję gatunków roślin, które dawać będą większe plony.
      Gdyby produkować rośliny, w których ścieżka odzyskiwania energii cieplnej będzie jeszcze sprawniejsza – uważa badacz – to fotosynteza przebiegać będzie efektywniej, a roślina produkować będzie więcej biomasy. To zaś przekłada się bezpośrednio na większe plony.
      Zdaniem prof. Gruszeckiego kolejnym miejscem, gdzie można zastosować nową wiedzę, jest produkcja urządzeń do sztucznej fotosyntezy. Prace nad nimi trwają już w różnych miejscach na Ziemi, również w Polsce.
      Naukowiec wyjaśnia, na czym polegało odkrycie jego zespołu. Z badań wynika, że wśród struktur w chloroplastach, w których zachodzi fotosynteza, znajdują się kompleksy barwnikowo-białkowe. Pełnią one funkcję anten zbierających światło. Okazuje się, że kompleksy te grupują się spontanicznie w struktury zdolne do recyklingu energii rozproszonej w postaci ciepła. Anteny te przekazują również energię wzbudzenia uzyskaną z ciepła do centrów fotosyntetycznych, w których zachodzą reakcje rozszczepienia ładunku elektrycznego (w szczególności do Fotosystemu II). Proces ten wpływa na wzrost wydajności energetycznej fotosyntezy. I umożliwia wykorzystanie w tym procesie promieniowania o niższej energii (również z obszaru bliskiej podczerwieni). Wydaje się mieć to szczególne znaczenie w warunkach niskiej intensywności światła słonecznego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tibet AS-gamma Experiment zarejestrował najbardziej intensywne promieniowanie pochodzące ze źródła astrofizycznego. Energia fotonów pochodzących z Mgławicy Kraba wynosiła ponad 100 teraelektronowoltów (TEV), to około 10-krotnie więcej niże maksymalna energia uzyskiwana w Wielkim Zderzaczu Hadronów.
      Naukowcy spekulują, że źródłem tak intensywnego promieniowania jest pulsar ukryty głęboko we wnętrzu Mgławicy.
      Pojawienie się Mgławicy Kraba zostało zauważone na Ziemi w 1054 roku. Wydarzenie to odnotowały źródła historyczne. Jako, że Mgławica położona jest w odległości ponad 6500 lat świetlnych od Ziemi wiemy, że eksplozja, w wyniku której powstała, miała miejsce około 7500 lat temu.
      Nowa gwiazda została po raz pierwszy zaobserwowana 4 lipca 1054 roku. Jej pojawienie się odnotowały chińskie źródła. W ciągu kilku tygodni przygasła, a dwa lata po pojawieniu się zniknęła zupełnie. Obecnie wiemy, że jej pojawienie się odnotowano też w XIII-wiecznym japońskim dokumencie oraz w źródłach arabskich. Niewykluczone też, że jest wspominana w źródłach europejskich.
      Mgławica Kraba została po raz pierwszy odkryta w 1731 roku przez Johna Bevisa. Następnie obserwowali ją inni astronomowie. Nazwę nadal jej William Parsons w 1844 roku. W latach 20. XX wieku ostatecznie stwierdzono, że Mgławica Kraba to pozostałość supernowej z 1054 roku. Tym samym stała się ona pierwszym obiektem astronomicznym powiązanym z eksplozją supernowej.
      Mgławica Kraba emituje promieniowanie niemal w każdym zakresie fal. Wysyła zarówno niskoenergetyczne fale radiowe, wysokoenergetyczne promieniowanie gamma i rentgenowskie, emituje też światło widzialne. Jednak zarejestrowanie ultraenergetycznego promieniowania to coś nowego.
      Wysokoenergetyczne fotony, takie jak promieniowanie gamma, z trudnością przedziera się przez ziemską atmosferę. Gdy promienie gamma trafią na atomy w atmosferze, powstaje cały deszcz innych cząstek. Jednak astronomowie nauczyli się rejestrować te cząstki. Najlepiej zrobić to za pomocą narzędzi o dużej powierzchni. Takich jak Tibet AS-gamma, który składa się z 597 detektorów rozrzuconych na przestrzeni niemal 66 000 metrów kwadratowych. A kilka metrów pod detektorami znajdują się 64 betonowe zbiorniki wypełnione wodą, która służy jako dodatkowy wykrywacz.
      Dzięki rozłożeniu detektorów na dużej powierzchni można śledzić kierunek i energię wysokoenergetycznych wydarzeń, a woda pozwala na rejestrowanie specyficznych sygnatur takich zjawisk. Dzięki temu specjaliści potrafią odróżnić promieniowanie gamma od promieniowania kosmicznego.
      Dane zebrane pomiędzy lutym 2014 roku a majem roku 2017 ujawniły istnienie 24 wydarzeń o energiach przekraczających 100 TeV pochodzących z Mgławicy Kraba. Niektóre z docierających do nas promieni miały energię dochodzącą do 450 TeV.
      Obecnie nie jest jasne, w jaki sposób powstają fotony o tak wysokich energiach, ani czy istnieje jakaś granica intensywności promieniowania. Specjaliści pracujący przy Tibet AS-gamma wyznaczyli sobie ambitny cel – zarejestrowanie fotonów o energiach liczonych w petaelektronowoltach, czyli przekraczających 1000 TeV. Biorąc pod uwagę, że analizy takich zjawisk trwają całymi latami, nie można wykluczyć, iż tego typu fotony już zostały przez Tibet AS-gamma zarejestrowane. Teraz wystarczy je tylko zidentyfikować w danych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...