Zaloguj się, aby obserwować tę zawartość
Obserwujący
0

Ćwiczenia fizyczne wspomagają regenerację serca
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Nieznane wcześniej organellum, odkryte wewnątrz ludzkich komórek, może zostać wykorzystane do leczenia ciężkich chorób dziedzicznych. Taką nadzieję mają jego odkrywcy, naukowcy z Wydziału Medycyny University of Virginia (UVA) oraz amerykańskich Narodowych Instytutów zdrowia (NIH). Nową strukturę nazwali „hemifuzomem”.
Hemifuzom odgrywa duża rolę w sortowaniu, przetwarzaniu i pozbywaniu się niepotrzebnego materiału. To jak odkrycie nowego centrum recyklingu wewnątrz komórki. Sądzimy, że hemifuzom pomaga w zarządzaniu przetwarzaniem materiału przez komórkę i jeśli proces ten zostanie zaburzony, może to prowadzić do chorób, które wpływają na wiele układów w organizmie, mówi doktor Seham Ebrahim. Dopiero zaczynamy rozumieć, jak to nowe organellum wpisuje się w szerszy obraz chorób i zdrowia. To bardzo ekscytujące badania, gdyż odkrycie czegoś zupełnie nowego w komórce to rzadkość, dodaje uczona.
Odkrycia dokonano dzięki doświadczeniu zespołu z UVA w tomografii krioelektronowej, która umożliwia „zamrożenie” komórki w czasie i dokładne przyjrzenie się jej. Uczeni sądzą, że hemifuzomy ułatwiają tworzenie się pęcherzyków wewnątrz komórki oraz organelli utworzonych z wielu pęcherzyków.
Pęcherzyki są jak niewielkie ciężarówki wewnątrz komórki. Hemifuzom to rodzaj doku, w którym ciężarówki się łączą i przewożą swój ładunek. To etap pracy, o którym dotychczas nie mieliśmy pojęcia, dodaje Ebrahim. Mimo, że hemifuzomy dotychczas umykały uwadze naukowców, ich odkrywcy mówią, że w pewnych częściach komórki występują one zaskakująco powszechnie. Teraz uczeni chcą lepiej poznać ich rolę w prawidłowym funkcjonowaniu komórek. Gdy już wiemy, że hemifuzomy istnieją, możemy badać, jak zachowują się one w zdrowych komórkach, a co się dzieje, gdy coś pójdzie nie tak. To może prowadzić do opracowania strategii leczenia złożonych chorób genetycznych, cieszy się Ebrahim.
Źródło: Hemifusomes and interacting proteolipid nanodroplets mediate multi-vesicular body formation, https://www.nature.com/articles/s41467-025-59887-9
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na Northwestern University powstał rozrusznik serca tak mały, że zmieści się wewnątrz strzykawki i można go łatwo wszczepić do organizmu. Miniaturowy rozrusznik może pracować z każdym sercem, jednak szczególnie nadaje się dla noworodków. Co więcej, wszystkie jego elementy są biokompatybilne i rozrusznik – przeznaczony dla pacjentów, którzy potrzebują go tymczasowo – rozpuszcza się w organizmie, nie ma więc potrzeby przeprowadzania zabiegu jego usunięcia.
Rozrusznik mniejszy od ziarenka ryżu współpracuje z niewielkim, elastycznym, bezprzewodowym urządzeniem, które przyczepia się do klatki piersiowej pacjenta. Gdy urządzenie wykryje nieregularny rytm serca, wysyła krótki impuls świetlny, który pobudza rozrusznik.
Kardiologia pediatryczna pilnie potrzebuje tymczasowych rozruszników serca. Tutaj miniaturyzacja jest niezwykle ważna, im urządzenie mniejsze, tym lepiej, wyjaśnia John A. Rogers, który kierował pracami. Motywowała nas chęć opracowania rozrusznika dla dzieci. Około 1% dzieci rodzi się z wadami serca. Dobra wiadomość jest taka, że po zabiegu chirurgicznym potrzebują one rozrusznika jedynie przez jakiś czas. Po około 7 dniach ich serca działają poprawnie. Ale tych 7 dni jest absolutnie kluczowych. Teraz możemy umieścić rozrusznik na sercu dziecka i pobudzać go za pomocą miękkiego, delikatnego urządzenia. I nie potrzebujemy kolejnego zabiegu, by rozrusznik usunąć, dodaje kardiolog eksperymentalny Igor Efimov.
Wielu pacjentów wymaga rozrusznika po operacji serca. Albo oczekują w ten sposób na docelowy stały rozrusznik, albo potrzebują go tymczasowo w okresie rehabilitacji. Obecnie podczas operacji do serca podłącza się elektrody, a wyprowadzone na zewnątrz kable łączone są z rozrusznikiem. Gdy taki czasowy rozrusznik nie jest już potrzebny, lekarze wyciągają elektrody. Kable wystają z ciała, a lekarz je wyciąga. Jednak mogą one zostać otoczone tkanką bliznowatą, więc podczas wyciągania może dojść do uszkodzenia mięśnia sercowego. Tak właśnie zmarł Neil Armstrong. Miał tymczasowy rozrusznik po operacji bypassów. Gdy usunięto elektrody, doszło u niego do krwotoku wewnętrznego, wyjaśnia Efimow.
Dlatego właśnie naukowcy z Northwestern stworzyli rozpuszczalny rozrusznik, który został opisany w 2021 roku na łamach Nature Biotechnology. Kardiolodzy chcieli mieć jednak mniejsze urządzenie, które można by łatwiej implementować i które lepiej nadawałoby się do użycia u małych pacjentów. Nasz oryginalny rozpuszczalny rozrusznik działał dobrze. Był cienki, elastyczny i w pełni się wchłaniał w organizmie. Jednak rozmiar jego anteny odbiorczej ograniczał możliwości miniaturyzacji. Dlatego też pracując przy nowym rozruszniku zrezygnowaliśmy z częstotliwości radiowej do bezprzewodowego sterowania urządzeniem, a użyliśmy światła. To pozwoliło na znaczące zmniejszenie rozmiarów urządzenia, mówi Rogers.
Kolejnym elementem, który pozwolił na dalszą miniaturyzację, było zastosowanie innego źródła zasilania. W miejsce NFC (near-field communications) użyto ogniwa galwanicznego. To prosta bateria zamieniająca energię chemiczną w elektryczną. Rozrusznik korzysta z dwóch elektrod zbudowanych z różnych metali. To one przekazują impuls elektryczny do serca. A energię czerpią z płynów ustrojowych, które je otaczają. Gdy rozrusznik jest wszczepiany, otaczające go płyny ustrojowe pełnią rolę elektrolitu. Na drugiej stronie rozrusznika znajduje się bardzo mały przełącznik, aktywowany za pomocą światła. Gdy do przełącznika dociera impuls świetlny wysłany przez skórę pacjenta, przeskakuje on z pozycji „wyłączony” na „włączony” i serce pobudzane jest za pomocą impulsu elektrycznego generowanego przez elektrody, wyjaśnia Rogers.
System korzysta z podczerwieni, która w sposób bezpieczny penetruje organizm. Gdy przyczepione do piersi pacjenta urządzenie wykryje nieprawidłowy rytm, uruchamia diodę, która błyska w rytm prawidłowej pracy serca. Mimo, że nowatorski rozrusznik jest bardzo mały, ma 1,8 mm szerokości, 3,5 mm długości i 1 mm grubości, dostarcza taki sam impuls jak pełnowymiarowe rozruszniki. Serce wymaga jedynie niewielkiej stymulacji elektrycznej. Minimalizując rozrusznik, znakomicie uprościliśmy procedurę jego wszczepienia, zmniejszamy obciążenia i ryzyko dla pacjenta, a dzięki temu, że rozrusznik rozpuszcza się organizmie, nie istnieje konieczność jego usuwania i ryzyko z tym związane, stwierdza Rogers.
Na tym jednak nie koniec zalet minirozrusznika. Jako że urządzenie jest tak małe, można wszczepić kilka rozruszników w różne regiony serca i każdym z nich sterować za pomocą światła o innej długości fali. To zaś pozwala na uzyskanie bardzo skomplikowanej synchronizacji. W szczególnych przypadkach można w różnym rytmie pobudzać różne regiony serca i radzić sobie w ten sposób z arytmiami.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Siedzący tryb życia zwiększa ryzyko wielu chorób serca, nawet gdy nasza aktywność fizyczna odpowiada zalecanym normom. Badacze z Mass General Brigham zauważyli, że ryzyko wystąpienia migotania przedsionków, zawału, niewydolności serca oraz zgonu z powodu chorób układu krążenia jest wyższe, a ryzyko wystąpienia niewydolności serca i zgonu, jest aż o 40–60 procent wyższe, jeśli prowadzimy siedzący tryb życia dłużej niż 10,6 godziny na dobę. I nie ma tutaj znaczenia, ile jak bardzo poza tym jesteśmy aktywni fizycznie.
Siedzący tryb życia jest tutaj definiowany, jako prowadzona po przebudzeniu aktywność o niskim wydatkowaniu energii, taka jak siedzenie czy leżenie. W czas siedzącego trybu życia nie wlicza się snu. Jeśli przekraczamy te 10,6 godziny, to później nawet zalecana dawka aktywności fizycznej może nie redukować tego ryzyka.
Wielu z nas spędza większość dnia siedząc. I o ile mamy wiele badań pokazujących, jak ważna jest aktywność fizyczna, to niewiele wiemy o konsekwencjach zbyt długiego siedzenia, poza ogólnym stwierdzeniem, że może być ono szkodliwe, mówi główna autorka badań, Ezimamaka Ajufo.
Siedzący tryb życia prowadzą nawet osoby aktywne fizycznie. To bardzo ważna uwaga, gdyż zwykle sądzimy, że jeśli po spędzeniu dnia na siedząco, będziemy ćwiczyli, to w jakiś sposób zniwelujemy niekorzystne skutki siedzenia. Odkryliśmy, że to bardziej skomplikowane, dodaje uczona.
Naukowcy wykorzystali w swojej analizie dane 89 530 osób, które przez tydzień nosiły urządzenie monitorujące ich aktywność. Przyglądali się związkowi pomiędzy typowym dniem tych osób, a przyszłym ryzykiem wystąpienia czterech wspomnianych problemów zdrowotnych. Okazało się, że wiele z negatywnych skutków siedzącego trybu życia występowało też u osób, które spełniały zalecenia o ponad 150 minutach tygodniowo umiarkowanych do intensywnych ćwiczeń fizycznie. O ile bowiem ryzyko migotania przedsionków i zawału serca można w większości zrównoważyć ćwiczeniami, to w przypadku niewydolności i zgonu z powodu chorób układu krążenia, ryzyko można jedynie częściowo zmniejszyć.
Nasze dane pokazują, że lepiej jest siedzieć mniej i ruszać się więcej, a unikanie zbyt długiego siedzenia jest bardzo ważne dla uniknięcia niewydolności serca i zgonu, wyjaśnia Shaan Khurshid. Aktywność fizyczna jest ważna, ale równie ważne jest unikanie długotrwałego siedzenia, dodaje Patrick Ellinor.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wszystkie wyżej zorganizowane formy życia, od roślin i grzybów, po ludzi i zwierzęta, są eukariontami, organizmami zbudowanymi z komórek posiadających jądro komórkowe. To odróżnia je od prokariontów nie posiadających jądra komórkowego. Pochodzenie eukariontów to jedna z największych zagadek biologii.
Według dominującej obecnie hipotezy w pewnym momencie doszło do połączenia dwóch prokariontów, archeona z nadtypu Asgard i bakterii. Bakteria utworzyła mitochondrium. W ten sposób powstał przodek eukariontów, który miał do dyspozycji na tyle dużo energii, że mógł rozwinąć się w złożoną komórkę, jaką znamy dzisiaj. Jedną z cech definiujących takie złożone komórki eukariotyczne jest ich zdolność do endocytozy, czyli pochłaniania innych komórek.
Prokarionty nie są w stanie pochłaniać innych komórek. Nie mają wystarczająco dużo energii, by przeprowadzić ten proces. A przynajmniej tak do niedawna uważano. Naukowcy z Uniwersytetu w Jenie poinformowali właśnie o potwierdzeniu „niemożliwego” – prokariotycznej bakterii, zdolnej do pożerania innych komórek.
Profesor Christian Jogler i jego zespół od ponad 10 lat prowadzą badania mające wyjaśnić powstanie eukariontów. Skupili się na prokariotycznych bakteriach Planctomycetes. To unikatowe organizmy, które ze względu na niezwykłą biologię komórek są uznawane przez niektórych za możliwych przodków eukariontów. Pomysł, że doszło do fuzji dwóch różnych prokariontów w jednego eukarionta nie przekonuje mnie z punktu widzenia biologii komórki. Nikt nigdy czegoś takiego nie zaobserwował, a taka hybryda prawdopodobnie nie mogłaby przetrwać ze względu na różne struktury błony komórkowej i układy molekularne, mówi profesor Jogler.
W 2014 roku jego zespół znalazł w Morzu Bałtyckim nieznane wcześniej Planctomycetes. Te bakterie zmieniają kształt, potrafią „chodzić” po powierzchni, wyjaśnia uczony. Mają unikatową budowę jak na prokarionty. Ich istnienie wzmocniło hipotezę, że komórki eukariotyczne mogły powstać z Planctomycetes. W 2019 roku profesor Takashi Shiratori i jego zespół z Uniwersytetu w Tsukubie donieśli, że zaobserwowali u Planctomycetes proces pochłaniania innych komórek podobny do endocytozy. Wydawało się więc, że pogląd, jakoby prokarionty nie były zdolne do endocytozy, został obalony.
Szczerze mówiąc, nie wierzyłem doktorowi Shiratoriemu, przyznaje Jogler. Niemieccy uczeni postanowili podważyć wyniki Japończyków. Po roku intensywnych badań stwierdzili jednak, że Shiratori i jego zespół mieli rację. W opublikowanym właśnie artykule badacze z Jeny nie tylko potwierdzili spostrzeżenia uczonych z Tsukuby, ale poinformowali też, że odkryte przez nich w Morzu Północnym bakterie Uabimicrobium helgolandensis również żywią się innymi bakteriami. A po analizach genetycznych tych bakterii Niemcy doszli do wniosku, że drapieżne Planctomycetes są pomostem pomiędzy prokariontami i eukariontami. Ich zdaniem odegrały one znaczącą rolę w pojawieniu się eukariontów, a może nawet i pojawieniu się życia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Naukowcy z Northwestern University poinformowali na łamach PNAS o stworzeniu nowego materiału wysokiej jakości, który z powodzeniem zregenerował tkankę chrzęstną u dużych zwierząt. Jak mówią wynalazcy, materiał wygląda jak gumowata maź i składa się z sieci molekuł, które naśladują naturalne środowisko tkanki chrzęstnej. Podczas badań podawano go do stawu kolanowego zwierząt. W ciągu sześciu miesięcy zaobserwowano dowody na naprawę zniszczonego stawu, w tym pojawienie się nowej tkanki chrzęstnej zawierającej naturalne biopolimery. Autorzy badań mają nadzieję, że uda im się tak rozwinąć ich materiał, że w przyszłości posłuży on do leczenia chorób degeneracyjnych, urazów sportowych i nie będą już konieczne pełne protezy kolana.
Tkanka chrzęstna to podstawowy element stawów. Gdy zostaje ona uszkodzona, ma to wielki wpływ na ludzkie zdrowie i mobilność. Problem w tym, że u dorosłych tkanka chrzęstna nie ma możliwości regeneracji. Nasza terapia stwarza warunki do takiej regeneracji tkanki, które w naturalny sposób się nie regenerują. Sądzimy, że może to pomóc w rozwiązaniu poważnego problemu medycznego, mówi główny autor badań, Samuel I. Stupp.
Nowy materiał zawiera bioaktywny peptyd łączący się z transformującym czynnikiem wzrostu beta 1 (TGF-β1) – podstawową proteiną odpowiedzialną na rozwój i utrzymanie tkanki chrzęstnej – oraz zmodyfikowany kwas hialuronowy. Wiele osób słyszało o kwasie hialuronowym, gdyż jest to popularny składnik produktów do pielęgnacji skóry. Występuje on naturalnie w wielu tkankach ludzkiego ciała, w tym w stawach i mózgu. Wybraliśmy go, gdyż przypomina naturalne polimery znajdujące się w tkance chrzęstnej, dodaje uczony. Jego zespół zintegrował bioaktywny peptyd i chemicznie zmodyfikowany kwas hialuronowy tak że doszło do spontanicznego utworzenia nanowłókien, które połączyły się w sposób naśladujący naturalną architekturę tkanki chrzęstnej. W ten sposób powstało rusztowanie, na którym mogą wesprzeć się komórki, by zregenerować tkankę chrzęstną. A do tej regeneracji zachęcają bioaktywne komponenty, wysyłające do organizmu odpowiednie sygnały.
Materiał został przetestowany na owcach. Wybrano te zwierzęta, gdyż posiadają złożony stan kolanowy, który ma podobny rozmiar i znosi podobne obciążenia co staw ludzki. Ponadto ich tkanka chrzęstna niezwykle trudno ulega regeneracji. Owcom wstrzyknięto materiał w staw kolanowy. Wypełnił on uszkodzone przestrzenie i indukował regenerację uszkodzonej tkanki.
Stupp ma nadzieję, że w przyszłości materiał ten zostanie wykorzystany podczas zabiegów chirurgicznych na kolanach. Obecnie stosuje się metodę chirurgiczną, w czasie której lekarz powoduje niewielkie uszkodzenia kości pod tkanką chrzęstną, by spowodować wzrost nowej tkanki chrzęstnej. Problemem w tej technice jest fakt, że często tworzy się wówczas tkanka chrzęstna włóknista, taka jak w uszach, a nie tkanka chrzęstna szklista, potrzebna do prawidłowego funkcjonowania stawów, stwierdza Stupp. Doprowadzając do regeneracji tkanki chrzęstnej szklistej uzyskamy lepsze wyniki i rozwiążemy długoterminowy problem ograniczonej mobilności oraz bólu, wyjaśnia.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.