Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ćwiczenia fizyczne wspomagają regenerację serca

Rekomendowane odpowiedzi

Nie od dzisiaj wiadomo, że wysiłek fizyczny jest korzystny dla serca. Dotychczas jednak nie do końca rozumiano mechanizm tego dobroczynnego wpływu. Badania przeprowadzone przez naukowców z Uniwersytetu Harvarda oraz Massachusetts General Hospital przyniosły interesujące wyniki. Okazuje się, że ćwiczenia fizyczne stymulują serce do produkcji nowych komórek mięśnia sercowego, zarówno podczas normalnej pracy jak i po zawale.

Ludzkie serce ma ograniczone możliwości regeneracji. U młodych dorosłych każdego roku dochodzi do wymiany zaledwie 1% komórek serca, a odsetek ten spada z wiekiem. Starzenie się i utrata komórek serca grożą chorobami i zawałami, dlatego też działania mające na celu zwiększenie liczby tworzonych nowych komórek mogą pomóc w zapobieganiu licznym problemom zdrowotnym.

Chcieliśmy sprawdzić, czy istnieje naturalna metoda zwiększenia zdolności regeneracyjnych serca. Postanowiliśmy więc przetestować znaną zdrową i bezpieczną metodę: ćwiczenia fizyczne, mówi Ana Vujic z Wydziału Komórek Macierzystych i Biologii Regeneracyjnej Uniwersytetu Harvarda. W ramach badań na myszach zwierzęta zostały podzielone na dwie grupy. Jedna z nich miała dostęp do kołowrotków, z których mogła dowolnie korzystać. Druga grupa nie miała dostępu do kołowrotków. Te zwierzęta, w których klatkach były kołowrotki przebiegały za ich pomocą średnio odległość 5 kilometrów dziennie.

Pomiary zdolności regeneracyjnej serca myszy prowadzono za pomocą specjalnie oznaczonych środków chemicznych, które były wprowadzane do DNA dzielących się komórek. Śledząc ten środek naukowcy byli w stanie sprawdzić, gdzie i ile komórek uległo podziałowi. Okazało się, że u myszy, które miały dostęp do kołowrotków, powstawało ponad 4,5-krotnie więcej nowych komórek serca, niż u myszy, które nie ćwiczyły.

Chcieliśmy też sprawdzić, jak sobie radzi serce po zawale, gdyż głównym celem naszych badań było prześledzenie sposobu regeneracji, mówi Vujic. Po wywołanym ataku serca myszy, które miały dostęp do kołowrotka nadal z niego korzystały i przebywały 5 kilometrów dziennie. W porównaniu z myszami prowadzącymi mniej aktywny tryb życia zauważono u nich zwiększoną aktywność w tych obszarach, gdzie pojawiały się nowe komórki. To dowodziło, że ćwiczenia fizyczne odgrywają olbrzymią rolę w regeneracji mięśnia sercowego.

Do utrzymania serca w zdrowiu konieczne jest zrównoważenie utraty komórek spowodowanej starzeniem się lub chorobą poprzez regenerację i pojawienie się nowych komórek. Nasze badania sugerują, że ćwiczenia fizyczne mogą pomóc w takim zbilansowaniu, stwierdził profesor Anthony Rosenzweig z Uniwersytetu Harvarda, który jest ordynatorem kardiologii w Massachusetts General Hospital. Badania pokazały, że dzięki regularnym ćwiczeniom można mieć młodsze serce, dodaje profesor Richard Lee, specjalista w dziedzinie komórek macierzystych i biologii regeneracyjnej.

W najbliższej przyszłości naukowcy chcą skupić się na wyjaśnieniu mechanizmu, dzięki któremu aktywność fizyczna wspomaga tworzenie się nowych komórek mięśnia sercowego.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Siedzący tryb życia zwiększa ryzyko wielu chorób serca, nawet gdy nasza aktywność fizyczna odpowiada zalecanym normom. Badacze z Mass General Brigham zauważyli, że ryzyko wystąpienia migotania przedsionków, zawału, niewydolności serca oraz zgonu z powodu chorób układu krążenia jest wyższe, a ryzyko wystąpienia niewydolności serca i zgonu, jest aż o 40–60 procent wyższe, jeśli prowadzimy siedzący tryb życia dłużej niż 10,6 godziny na dobę. I nie ma tutaj znaczenia, ile jak bardzo poza tym jesteśmy aktywni fizycznie.
      Siedzący tryb życia jest tutaj definiowany, jako prowadzona po przebudzeniu aktywność o niskim wydatkowaniu energii, taka jak siedzenie czy leżenie. W czas siedzącego trybu życia nie wlicza się snu. Jeśli przekraczamy te 10,6 godziny, to później nawet zalecana dawka aktywności fizycznej może nie redukować tego ryzyka.
      Wielu z nas spędza większość dnia siedząc. I o ile mamy wiele badań pokazujących, jak ważna jest aktywność fizyczna, to niewiele wiemy o konsekwencjach zbyt długiego siedzenia, poza ogólnym stwierdzeniem, że może być ono szkodliwe, mówi główna autorka badań, Ezimamaka Ajufo.
      Siedzący tryb życia prowadzą nawet osoby aktywne fizycznie. To bardzo ważna uwaga, gdyż zwykle sądzimy, że jeśli po spędzeniu dnia na siedząco, będziemy ćwiczyli, to w jakiś sposób zniwelujemy niekorzystne skutki siedzenia. Odkryliśmy, że to bardziej skomplikowane, dodaje uczona.
      Naukowcy wykorzystali w swojej analizie dane 89 530 osób, które przez tydzień nosiły urządzenie monitorujące ich aktywność. Przyglądali się związkowi pomiędzy typowym dniem tych osób, a przyszłym ryzykiem wystąpienia czterech wspomnianych problemów zdrowotnych. Okazało się, że wiele z negatywnych skutków siedzącego trybu życia występowało też u osób, które spełniały zalecenia o ponad 150 minutach tygodniowo umiarkowanych do intensywnych ćwiczeń fizycznie. O ile bowiem ryzyko migotania przedsionków i zawału serca można w większości zrównoważyć ćwiczeniami, to w przypadku niewydolności i zgonu z powodu chorób układu krążenia, ryzyko można jedynie częściowo zmniejszyć.
      Nasze dane pokazują, że lepiej jest siedzieć mniej i ruszać się więcej, a unikanie zbyt długiego siedzenia jest bardzo ważne dla uniknięcia niewydolności serca i zgonu, wyjaśnia Shaan Khurshid. Aktywność fizyczna jest ważna, ale równie ważne jest unikanie długotrwałego siedzenia, dodaje Patrick Ellinor.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wszystkie wyżej zorganizowane formy życia, od roślin i grzybów, po ludzi i zwierzęta, są eukariontami, organizmami zbudowanymi z komórek posiadających jądro komórkowe. To odróżnia je od prokariontów nie posiadających jądra komórkowego. Pochodzenie eukariontów to jedna z największych zagadek biologii.
      Według dominującej obecnie hipotezy w pewnym momencie doszło do połączenia dwóch prokariontów, archeona z nadtypu Asgard i bakterii. Bakteria utworzyła mitochondrium. W ten sposób powstał przodek eukariontów, który miał do dyspozycji na tyle dużo energii, że mógł rozwinąć się w złożoną komórkę, jaką znamy dzisiaj. Jedną z cech definiujących takie złożone komórki eukariotyczne jest ich zdolność do endocytozy, czyli pochłaniania innych komórek.
      Prokarionty nie są w stanie pochłaniać innych komórek. Nie mają wystarczająco dużo energii, by przeprowadzić ten proces. A przynajmniej tak do niedawna uważano. Naukowcy z Uniwersytetu w Jenie poinformowali właśnie o potwierdzeniu „niemożliwego” – prokariotycznej bakterii, zdolnej do pożerania innych komórek.
      Profesor Christian Jogler i jego zespół od ponad 10 lat prowadzą badania mające wyjaśnić powstanie eukariontów. Skupili się na prokariotycznych bakteriach Planctomycetes. To unikatowe organizmy, które ze względu na niezwykłą biologię komórek są uznawane przez niektórych za możliwych przodków eukariontów. Pomysł, że doszło do fuzji dwóch różnych prokariontów w jednego eukarionta nie przekonuje mnie z punktu widzenia biologii komórki. Nikt nigdy czegoś takiego nie zaobserwował, a taka hybryda prawdopodobnie nie mogłaby przetrwać ze względu na różne struktury błony komórkowej i układy molekularne, mówi profesor Jogler.
      W 2014 roku jego zespół znalazł w Morzu Bałtyckim nieznane wcześniej Planctomycetes. Te bakterie zmieniają kształt, potrafią „chodzić” po powierzchni, wyjaśnia uczony. Mają unikatową budowę jak na prokarionty. Ich istnienie wzmocniło hipotezę, że komórki eukariotyczne mogły powstać z Planctomycetes. W 2019 roku profesor Takashi Shiratori i jego zespół z Uniwersytetu w Tsukubie donieśli, że zaobserwowali u Planctomycetes proces pochłaniania innych komórek podobny do endocytozy. Wydawało się więc, że pogląd, jakoby prokarionty nie były zdolne do endocytozy, został obalony.
      Szczerze mówiąc, nie wierzyłem doktorowi Shiratoriemu, przyznaje Jogler. Niemieccy uczeni postanowili podważyć wyniki Japończyków. Po roku intensywnych badań stwierdzili jednak, że Shiratori i jego zespół mieli rację. W opublikowanym właśnie artykule badacze z Jeny nie tylko potwierdzili spostrzeżenia uczonych z Tsukuby, ale poinformowali też, że odkryte przez nich w Morzu Północnym bakterie Uabimicrobium helgolandensis również żywią się innymi bakteriami. A po analizach genetycznych tych bakterii Niemcy doszli do wniosku, że drapieżne Planctomycetes są pomostem pomiędzy prokariontami i eukariontami. Ich zdaniem odegrały one znaczącą rolę w pojawieniu się eukariontów, a może nawet i pojawieniu się życia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Northwestern University poinformowali na łamach PNAS o stworzeniu nowego materiału wysokiej jakości, który z powodzeniem zregenerował tkankę chrzęstną u dużych zwierząt. Jak mówią wynalazcy, materiał wygląda jak gumowata maź i składa się z sieci molekuł, które naśladują naturalne środowisko tkanki chrzęstnej. Podczas badań podawano go do stawu kolanowego zwierząt. W ciągu sześciu miesięcy zaobserwowano dowody na naprawę zniszczonego stawu, w tym pojawienie się nowej tkanki chrzęstnej zawierającej naturalne biopolimery. Autorzy badań mają nadzieję, że uda im się tak rozwinąć ich materiał, że w przyszłości posłuży on do leczenia chorób degeneracyjnych, urazów sportowych i nie będą już konieczne pełne protezy kolana.
      Tkanka chrzęstna to podstawowy element stawów. Gdy zostaje ona uszkodzona, ma to wielki wpływ na ludzkie zdrowie i mobilność. Problem w tym, że u dorosłych tkanka chrzęstna nie ma możliwości regeneracji. Nasza terapia stwarza warunki do takiej regeneracji tkanki, które w naturalny sposób się nie regenerują. Sądzimy, że może to pomóc w rozwiązaniu poważnego problemu medycznego, mówi główny autor badań, Samuel I. Stupp.
      Nowy materiał zawiera bioaktywny peptyd łączący się z transformującym czynnikiem wzrostu beta 1 (TGF-β1) – podstawową proteiną odpowiedzialną na rozwój i utrzymanie tkanki chrzęstnej – oraz zmodyfikowany kwas hialuronowy. Wiele osób słyszało o kwasie hialuronowym, gdyż jest to popularny składnik produktów do pielęgnacji skóry. Występuje on naturalnie w wielu tkankach ludzkiego ciała, w tym w stawach i mózgu. Wybraliśmy go, gdyż przypomina naturalne polimery znajdujące się w tkance chrzęstnej, dodaje uczony. Jego zespół zintegrował bioaktywny peptyd i chemicznie zmodyfikowany kwas hialuronowy tak że doszło do spontanicznego utworzenia nanowłókien, które połączyły się w sposób naśladujący naturalną architekturę tkanki chrzęstnej. W ten sposób powstało rusztowanie, na którym mogą wesprzeć się komórki, by zregenerować tkankę chrzęstną. A do tej regeneracji zachęcają bioaktywne komponenty, wysyłające do organizmu odpowiednie sygnały.
      Materiał został przetestowany na owcach. Wybrano te zwierzęta, gdyż posiadają złożony stan kolanowy, który ma podobny rozmiar i znosi podobne obciążenia co staw ludzki. Ponadto ich tkanka chrzęstna niezwykle trudno ulega regeneracji. Owcom wstrzyknięto materiał w staw kolanowy. Wypełnił on uszkodzone przestrzenie i indukował regenerację uszkodzonej tkanki.
      Stupp ma nadzieję, że w przyszłości materiał ten zostanie wykorzystany podczas zabiegów chirurgicznych na kolanach. Obecnie stosuje się metodę chirurgiczną, w czasie której lekarz powoduje niewielkie uszkodzenia kości pod tkanką chrzęstną, by spowodować wzrost nowej tkanki chrzęstnej. Problemem w tej technice jest fakt, że często tworzy się wówczas tkanka chrzęstna włóknista, taka jak w uszach, a nie tkanka chrzęstna szklista, potrzebna do prawidłowego funkcjonowania stawów, stwierdza Stupp. Doprowadzając do regeneracji tkanki chrzęstnej szklistej uzyskamy lepsze wyniki i rozwiążemy długoterminowy problem ograniczonej mobilności oraz bólu, wyjaśnia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chemioterapia staje się coraz bardziej skuteczna, coraz więcej osób udaje się wyleczyć z nowotworów, jednak wiele z nich ma później problemy z sercem, które z czasem zabijają część byłych pacjentów onkologicznych. Pojawiła się więc nowa dziedzina medycyny, kardioonkologia. Zajmujący się nią naukowcy z University of Illinois Chicago zidentyfikowali właśnie mechanizm, za pomocą którego enzymy mogą pomóc w zapobieganiu uszkodzenia mięśnia sercowego u osób poddawanych chemioterapii.
      Uczeni najpierw zauważyli, że gdy komórki mięśnia sercowego zostają poddane stresowi pod wpływem chemioterapii, enzymy mitochondrialne przemieszczają się do jądra komórkowego, co jest niezwykłym zjawiskiem. Badacze nie wiedzieli, co to oznacza – czy zjawisko to prowadzi do uszkodzenia komórek, czy też ma je chronić przed uszkodzeniem. Nie mieliśmy pojęcia, co wykażą badania, mówi doktor Jalees Rehman.
      Stworzyli więc wersje enzymów, które omijały mitochondria i przemieszczały się do jądra. Okazało się, że to wzmacniało komórkę, utrzymując ją przy życiu. Następnie wykazali, że proces ten działa tak samo zarówno w przypadku komórek ludzkiego serca uzyskanych z ludzkich komórek macierzystych jak i u myszy poddanych chemioterapii. Wydaje się, że mamy tutaj nieznany nam wcześniej mechanizm, za pomocą którego komórki mięśnia sercowego bronią się przed uszkodzeniem w wyniku chemioterapii, dodaje Rehman.
      Odkrycie daje nowe możliwości kliniczne. Lekarze mogą na przykład testować indywidualnych pacjentów pod kątem zdolności ich organizmu do ochrony serca. Mogliby z komórek macierzystych z krwi pacjenta uzyskiwać komórki serca i testować je pod kątem podatności na uszkodzenia. Oceniając przemieszczanie się enzymów z mitochondriów oraz uszkodzenia powodowane przez chemioterapię można by ocenić jej skutki dla pacjenta, wyjaśnia uczony. U pacjentów, u których taka ochrona jest niedostateczna, można by wywoływać zwiększony ruch enzymów do jąder komórkowych, chroniąc w ten sposób serce przed uszkodzeniem.
      Naukowcy chcą teraz przeprowadzić kolejne badania, by sprawdzić, czy ten sam mechanizm może chronić serce przed innymi uszkodzeniami, powodowanymi np. przez nadciśnienie czy zawały. Chcieliby też przekonać się, czy w ten sposób można chronić inne komórki np. tworzące naczynia krwionośne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Regularna aktywność fizyczna może zmniejszyć krwawienie do mózgu u osób z krwotokiem śródmózgowym. Do takich wniosków doszli naukowcy z Uniwersytetu w Göteborgu, którzy przeprowadzili badania retrospektywne na 686 osobach leczonych z powodu krwotoku śródmózgowego. Uczeni nie byli w stanie określić związku przyczynowo-skutkowego zaobserwowanego zjawiska, ale jednoznacznie wykazali, że u osób aktywnych fizycznie krwotok był mniejszy, niż u nieaktywnych.
      Za aktywnie fizycznego uczestnika badań uznawano osobę, która angażowała się w co najmniej lekką aktywność fizyczną polegającą na spacerowaniu, jeżdżeniu na rowerze, pływaniu, uprawianiu ogrodu czy tańczeniu przez co najmniej 4 godziny tygodniowo. Zauważyliśmy, że u osób angażujących się w regularną aktywność fizyczną objętość krwiaka w chwili przyjęcia do szpitala średnio o 50% mniejsza, niż u osób nieaktywnych. Wcześniej zauważono takie zjawisko u zwierząt, ale nie u ludzi, mów główny autor badań, doktorant Adam Viktorisson.
      Krwotok śródmózgowy może być bardzo niebezpieczny. Dlatego osoby trafiające do szpitala z jego objawami są badane za pomocą tomografu komputerowego. Czasem wymagana jest interwencja chirurgiczna, jednak w większości przypadków wystarczy zastosowanie odpowiednich leków.
      Odkrycie dokonane przez naukowców z Göteborga dotyczy wszelkich rodzajów krwotoków śródmózgowych, niezależnie od ich lokalizacji. Aktywni fizycznie pacjenci mieli mniejsze krwiaki zarówno w przypadku krwotoków w głębszych regionach mózgu, często powodowanych przez wysokie ciśnienie krwi, jak i przy powierzchni, gdzie krwotoki łączy się ze związanymi z wiekiem schorzeniami jak demencja.
      Profesor Katharina Stibrant Sunnerhagen mówi, że badania te to dobry punkt wyjścia do lepszego poznania związku pomiędzy krwotokiem śródmózgowym a aktywnością fizyczną. Mamy nadzieję, że nasza praca pozwoli lepiej zrozumieć krwotok śródmózgowy i opracować lepsze metody zapobiegania temu schorzeniu.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...