Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Rząd Niemiec zapowiedział, że przeznaczy 3 miliardy euro na zbudowanie do roku 2026 uniwersalnego komputera kwantowego. To część nowej strategii, w ramach której Niemcy chcą na polu informatyki kwantowej dorównać światowej czołówce – USA i Chinom – oraz stać się na tym polu liderem wśród krajów Unii Europejskiej. To kluczowe dla niemieckiej suwerenności technologicznej, stwierdziła Bettina Sark-Watzinger, minister ds. edukacji i badań.
Ze wspomnianej kwoty 2,2 miliarda trafi do różnych ministerstw, które będą zajmowały się promocją i znalezieniem zastosowań dla komputerów kwantowych. Największa pulę, bo 1,37 miliarda otrzyma ministerstwo ds. edukacji i badań. Pozostałe 800 milionów euro otrzymają duże państwowe instytuty badawcze.
Rząd w Berlinie zakłada, że kwota ta pozwoli na zbudowanie do roku 2026 komputera kwantowego o pojemności co najmniej 100 kubitów, którego możliwości w niedługim czasie zostaną p powiększone do 500 kubitów. Tutaj warto przypomnieć, że w ubiegłym roku IBM zaprezentował 433-kubitowy komputer kwantowy.
W Unii Europejskiej nie powstały tak gigantyczne firmy IT jak Google czy IBM, które same są w stanie wydatkować miliardy dolarów na prace nad komputerami kwantowymi. Dlatego też przeznaczone nań będą pieniądze rządowe. Frank Wilhelm-Mauch, koordynator europejskiego projektu komputera kwantowego OpenSuperQPlus mówi, że i w USA finansowanie prac nad maszynami kwantowymi nie jest transparentne, bo wiele się dzieje w instytucjach wojskowych, a z Chin w ogóle brak jakichkolwiek wiarygodnych danych.
Komputery kwantowe wciąż jeszcze nie są gotowe do większości praktycznych zastosowań, jednak związane z nimi nadzieje są olbrzymie. Mogą one zrewolucjonizować wiele dziedzin życia. Mają przeprowadzać w ciągu sekund obliczenia, które komputerom klasycznym zajmują lata. A to oznacza, że możliwe będzie przeprowadzanie obliczeń, których teraz się w ogóle nie wykonuje, gdyż nie można ich skończyć w rozsądnym czasie. Maszyny kwantowe mogą przynieść rewolucję na tak różnych polach jak opracowywanie nowych leków czy logistyka.
Wiele niemieckich przedsiębiorstw działa już aktywnie na polu informatyki kwantowe. Na przykład firm Bosch, dostawca podzespołów dla przemysłu motoryzacyjnego, we współpracy z IBM-em wykorzystuje symulacje na komputerach kwantowych do zbadania czym można zastąpić metale ziem rzadkich w silnikach elektrycznych. Z kolei producent laserów Trumpf pracuje nad kwantowymi chipami i czujnikami, a działający na rynku półprzewodników Infineon rozwija układy scalone korzystające z szyfrowania kwantowego. Niemiecka Agencja Kosmiczna wystrzeliła zaś pierwsze satelity testujące systemy dystrybucji kwantowych kluczy szyfrujących.
Bettina Stark-Watzinger chce, by do roku 2026 w Niemczech z komputerów kwantowych korzystało co najmniej 60 podmiotów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Politechniki Wrocławskiej i Uniwersytetu w Würzburgu pochwalili się na łamach Nature Communications dokonaniem przełomu na polu badań kwantowych. Po raz pierwszy w historii udało się uzyskać ekscytony w izolatorze topologicznym. W skład zespołu naukowego weszli Marcin Syperek, Paweł Holewa, Paweł Wyborski i Łukasz Dusanowski z PWr., a obok naukowców z Würzburga wspomagali ich uczeni z Uniwersytetu w Bolonii i Oldenburgu.
Izolatory topologiczne to jednorodne materiały, które są izolatorami, ale mogą przewodzić ładunki elektryczne na swojej powierzchni, a wystąpienie przewodnictwa nie jest związane ze zmianą fazy materiału, np. z jego utlenianiem się. Pojawienie się przewodnictwa związane jest ze zjawiskami kwantowymi występującymi na powierzchni takich izolatorów. Istnienie izolatorów topologicznych zostało teoretycznie przewidziane w 1985 roku, a eksperymentalnie dowiedzione w 2007 roku właśnie na Uniwersytecie w Würzburgu.
Dotychczasowe prace nad wykorzystaniem izolatorów topologicznych koncentrowały się wokół prób kontroli przepływu ładunków elektrycznych za pomocą napięcia. Jeśli jednak izolator był wykonany z cząstek obojętnych elektrycznie, takie podejście nie działało. Naukowcy musieli więc wymyślić coś innego. W tym wypadku tym czymś okazało się światło.
Po raz pierwszy udało się wygenerować kwazicząstki – tak zwane ekscytony – w izolatorze topologicznym i eksperymentalnie udowodnić ich istnienie. W ten sposób uzyskaliśmy nowe narzędzie, za pomocą którego możemy – metodami optycznymi – kontrolować elektrony. Otworzyliśmy nowy kierunek badań nad izolatorami topologicznymi, mówi profesor Ralph Claessen.
Ekscyton to kwazicząstka, która stanowi parę elektron-dziura połączoną siłami elektrostatycznymi. Uzyskaliśmy ekscytony oddziałując krótkimi impulsami światła na jednoatomową warstwę materiału, mówi profesor Claessen. Przełomowy tutaj jest fakt, że materiałem tym był izolator topologiczny. Dotychczas nie udawało się w nim uzyskać ekscytonów. W tym przypadku izolator zbudowany był z bizmutu, którego atomy ułożono w strukturę plastra miodu.
Całość badań optycznych przeprowadzono w Laboratorium Optycznej Spektroskopii Nanostruktur Politechniki Wrocławskiej.
Osiągnięcie to jest o tyle istotne, że od około 10 lat specjaliści badają ekscytony w dwuwymiarowych półprzewodnikach, chcąc wykorzystać je w roli nośników informacji kontrolowanych światłem. Teraz za pomocą światła uzyskaliśmy ekscytony w izolatorze topologicznym. Reakcje zachodzące pomiędzy światłem a ekscytonami mogą prowadzić do pojawienia się nowych zjawisk w takich materiałach. To zaś można będzie wykorzystać, na przykład, do uzyskiwania kubitów, wyjaśnia Claessen. Kubity, czyli kwantowe bity, to podstawowe jednostki informacji w komputerach kwantowych. Badania polsko-niemieckiego zespołu mogą więc doprowadzić do powstania nowych kontrolowanych światłem podzespołów dla komputerów kwantowych.
« powrót do artykułu -
By KopalniaWiedzy.pl
„Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.
« powrót do artykułu -
By KopalniaWiedzy.pl
IBM zaprezentował 127-kubitowy procesor kwantowy Eagle. Dzięki niemu, jak zapewnia koncern, klienci firmy będą mogli wykorzystać niedostępne dotychczas zasoby obliczeniowe, co ma się stać krokiem milowym w kierunku wykorzystania obliczeń kwantowych w codziennej praktyce. Eagle ma bowiem wkrótce zostać udostępniony wybranym partnerom IBM-a.
Postrzegamy Eagle'a jako krok na drodze technologicznej rewolucji w historii maszyn obliczeniowych. W miarę, jak procesory kwantowe są rozbudowywane, każdy dodatkowy kubit dwukrotnie zwiększa ilość pamięci, jaką potrzebują komputery klasyczne, by symulować taki procesor. Spodziewamy się, że komputery kwantowe przyniosą realne korzyści, gdyż rosnąca złożoność procesów obliczeniowych, jakie są w stanie wykonać, przekroczy możliwości komputerów klasycznych, czytamy w informacji prasowej IBM-a.
Inżynierowie Błękitnego Giganta nie mieli łatwego zadania. Prace praktyczne i teoretyczne nad maszynami kwantowymi, opartymi na zasadach mechaniki kwantowej, są prowadzone od dziesięcioleci i od dawna wiemy, że komputery takie są w stanie przeprowadzać obliczenia niedostępne maszynom klasycznym. Jednak ich zbudowanie jest niezwykle trudne. Nawet najmniejszy wpływ czynników zewnętrznych może spowodować dekoherencję kubitów, czyli doprowadzić do stanu, w którym zawarta w nich informacja zostanie utracona.
Eagle zawiera niemal 2-krotnie więcej kubitów niż jego poprzednik, 65-kubitowy Hummingbird. Jednak jego powstanie wymagało czegoś więcej, niż tylko dodania kubitów. Inżynierowe IBM-a musieli opracować nowe i udoskonalić istniejące techniki, które – jak zapewniają – staną się podstawą do stworzenia ponad 1000-kubitowego układu Condor.
Kolejnym niezwykle ważnym elementem nowego procesora jest wykorzystanie techniki multiplekosowania odczytu, znaną już z procesora Hummingbird R2. We wcześniejszych układach kwantowych każdy kubit wymagał zastosowania osobnego zestawu elektroniki zajmującej się odczytem i przesyłaniem danych. Taka architektura może sprawdzić się przy kilkudziesięciu kubitach, jednak jest zbyt nieporęczna i niepraktyczna przy ponad 100 kubitach, nie wspominając już o 1121-kubitowym Condorze, który ma powstać za 2 lata. Multipleksowanie odczytu polega na łączeniu sygnałów odczytowych z wielu kubitów w jeden, dzięki czemu można znakomicie zmniejszyć ilość okablowania i komponentów elektronicznych, co z kolei pozwala na lepsze skalowanie całości.
Najbardziej interesującymi informacjami, których jeszcze nie znamy, są wyniki testów Quantum Volume (QV) i Circuit Layer Operations Per Second (CLOPS). Quantum Volume to stworzony przez IBM-a system pomiaru wydajności kwantowego komputera jako całości. Bierze pod uwagę nie tylko same kubity, ale również interakcje pomiędzy nimi, działania poszczególnych elementów komputera, w tym błędy obliczeniowe, błędy pomiarowe czy wydajność kompilatora. Im większa wartość QV, tym bardziej złożone problemy może rozwiązać komputer kwantowy. Z kolei zaproponowany niedawno przez IBM-a CLOPS to benchmark określający, na ilu obwodach kwantowych procesor jest w stanie wykonać operacje w ciągu sekundy. Maszyna Eagle nie została jeszcze poddana testom wydajnościowym i jakościowym.
W ubiegłym roku Honeywell ogłosił, że jego System Model H1, korzystający z zaledwie 10 kubitów, osiągnął w teście QV wartość 128. Nieco wcześniej zaś 27-kubitowy system IBM-a mógł się pochwalić QV 64. Widzimy zatem, że sama liczba kubitów nie mówi jeszcze niczego o wydajności samej maszyny.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.