Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Ryż na cholerę
dodany przez
KopalniaWiedzy.pl, w Medycyna
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Ryż jest podstawowym produktem spożywczym dla ponad 4 miliardów ludzi. Zawiera dużo węglowodanów, ale mało białka. W Azji, gdzie ryż się głownie spożywa, żyje ponad połowa wszystkich cukrzyków na świecie, a wielu z nich cierpi też na niedobór białka. Naukowcy z Międzynarodowego Instytutu Badań nad Ryżem na Filipinach oraz Instytutu Molekularnej Fizjologii Roślin im. Maxa Plancka w Niemczech, zidentyfikowali geny ryżu, które kontrolują zawartość węglowodanów i białek w roślinie. Następnie wyhodowali nowe odmiany, zawierające mało cukrów, a dużo białka. Wykorzystali przy tym zarówno tradycyjne metody, jak i modyfikacje genetyczne. Odmiana powstała w wyniku krzyżowania dwóch gatunków nie jest uznawana za roślinę GMO, w związku z tym można ją będzie uprawiać i sprzedawać w Unii Europejskiej.
Tradycyjne kultywary ryżu zawierają głównie węglowodany w postaci łatwo przyswajalnej skrobi. Może ona stanowić aż 90% węglowodanów. Taka skrobia ma wysoki indeks glikemiczny, co oznacza, że jej spożycie powoduje gwałtowny skok poziomu cukru, więc nie jest to pożywienie odpowiednie dla osób z cukrzycą. Nowe odmiany ryżu dają więc nadzieję, na poprawienie stanu zdrowia setek milionów mieszkańców Azji i Afryki, którzy dzięki nim powinni zyskać dostęp do żywności o niższym indeksie glikemicznym i zawierającej więcej białka.
Naukowcy skrzyżowali odmiany Samba Mahsuri oraz IR36ae, uzyskując nowy kultywar o 16-procentowej zawartości białka. To od 2 do 8 razy więcej, niż odmiany standardowe. Uzyskana odmiana zawiera wiele aminokwasów egzogennych, takich jak histydyna, izoleucyna, lizyna, metionina, fenyloalanina i walina. Zawiera ich tyle, że zapewnia rekomendowane dziennie spożycie tych aminokwasów dla osób powyżej 9. roku życia. Jednocześnie ma niski indeks glikemiczny, dzięki któremu poziom cukru we krwi nie rośnie tak gwałtownie, jak w przypadku tradycyjnych odmian.
Jakby tych zalet było mało, okazuje się, że nowe odmiany dają podobne plony jak obecnie uprawiane odmiany wysokowydajne. Zatem lepsza zawartość składników odżywczych nie będzie wiązała się z niższą produktywnością.
Dodatkową korzyścią jest fakt, że wspomniane odmiany można uzyskać zarówno metodami edycji genów, jak i poprzez tradycyjne krzyżowanie, zatem można je będzie uprawiać i sprzedawać nawet tam, gdzie odmiany GMO nie są dopuszczane na rynek.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badania kamiennych narzędzi z południowych Chin dostarczyły najstarszych dowodów na zbieranie ryżu przez ludzi. Wynika z nich, że nasi przodkowie żywili się tym zbożem już 10 000 lat temu. Naukowcy z Dartmouth College zidentyfikowali dwie metody zbioru, które ułatwiły udomowienie ryżu.
Dziki ryż różni się od udomowionego tym, że jego nasiona, gdy dojrzeją, opadają na ziemię. W odmianach udomowionych pozostają one na roślinie. By zebrać ryż, wcześni rolnicy potrzebowali narzędzi, a gdy już je mieli, zbierali te rośliny, na których nasiona zostawały po dojrzewaniu. W ten sposób w uprawach rósł odsetek roślin, które nie zrzucały nasion i w ten sposób doszło do udomowienia ryżu.
Przez długi czas zastanawiano się, dlaczego nie znajdujemy w południowych Chinach narzędzi do uprawy ryżu pochodzących ze wczesnego neolitu, z czasów, o których wiemy, że uprawiano już ryż, mówi główny autor najnowszych badań, profesor antropologii Jiajing Wang. Na neolitycznych stanowiskach w dolnym biegu Jangcy znaleziono wiele odłupków o ostrych brzegach. Wysunęliśmy hipotezę, że być może niektóre z nich były używane do zbiorów ryżu, dodaje.
Naukowcy przeanalizowali 52 takie narzędzia pochodzące ze stanowisk najstarszych kultur Shangshan i Kuahuqiao. Odłupki nie były dobrze obrobione, ale miały ostre krawędzie, a ich przeciętna długość i szerokość wynosiła ok. 4 cm. Uczeni zajęli się analizą śladów zużycia i poszukiwali na nich fitolitów, krzemionkowych tworów powstających wewnątrz komórek roślinnych.
Analizy zużycia pokazały, że ślady pozostawione na 30 badanych narzędziach odpowiadają śladom powstającym podczas ścinania roślin bogatych w krzemionkę. Odłupki te były bardziej wypolerowane i miały lepiej zaokrąglone brzegi od narzędzi wykorzystywanych do obrabiania drewna czy cięcia tkanki zwierząt. Okazało się, że na 28 z tych narzędzi występowały fitolity pochodzące z ryżu.
Co interesujące, fitolity pochodzące z różnych części rośliny różnią się od siebie, co pozwoliło nam na określenie metody zbiórki, dodaje Wang. Ślady zużycia oraz fitolitów wskazywały, że neolityczni mieszkańcy południa Chin wykorzystywali dwie techniki zbiórki. Obie są zresztą wykorzystywane do dzisiaj. Jedna polega na odcinaniu lub zeskrobywaniu samych kłosów, a druga na odcinaniu, niczym sierpem, łodygi.
Okazało się, że na starszych narzędziach, pochodzących sprzed 10–8,2 tysięcy lat temu ślady zużycia oraz rodzaj fitolitów wskazują na wykorzystywanie pierwszej z technik, zatem odcinania lub zeskrobywania kłosów. Natomiast narzędzia młodsze sprzed 8–7 tysięcy lat nosiły ślady odcinania łodygi.
Druga z technik, przypominające użycie sierpa, była szerzej wykorzystywane, gdyż ryż został lepiej udomowiony i nasiona pozostawały na łodydze. Gdy odcinasz całą roślinę, na której trzymają się ziarna, masz i ziarna i liście z łodygami, których możesz użyć jako materiału opałowego, budowlanego i do innych celów. To bardziej efektywny sposób zbiórki, wyjaśnia Wang.
Technika odcinania/zeskrobywania kłosów pozwala wybiórczo pozyskiwać ryż przez dłuższy czas. Jest to dobra metoda tam, gdzie ryż nie dojrzewa jednocześnie. Zmniejsza ona też opadanie ziaren podczas zbioru, pozwalając na pozyskanie większej ilości pożywienia. Metoda sierpa zwiększa zaś tempo zbiorów, a łodygi i liście mogą zostać wykorzystane na opał czy jako pożywienie dla zwierząt.
Wybór techniki zbioru jest też głęboko zakorzeniona w duchowości. W wielu społecznościach Azji Południowo-Wschodniej technika pozyskiwania samych kłosów przetrwała długo po wprowadzeniu bardziej skutecznych narzędzi. Było to częściowo związane z wierzeniami, że w ten sposób chroni się duszę ryżu i zadowala boginię ryżu, dzięki czemu zbiory są obfitsze.
Niewiele wiadomo o życiu duchowym społeczności wczesnego neolitu w dolnym biegu Jangcy. Uczeni sądza jednak, że metoda zbioru miała wpływ na udomowienie ryżu. Dominujące wykorzystanie techniki odcinania czy zeskrobywania kłosów przez kulturę Shangha było prawdopodobnie adaptacją do siedlisk ryżu we wczesnym holocenie. Oryza rufipogen, przodek wschodnioazjatyckiego udomowionego ryżu, rośnie na bagnistych mokradłach. Ziarno dojrzewa tam nierówno i opada do wody. Eksperymenty pokazują, że bardzo trudno jest tam zbierać ryż metodą sierpa. Obcinanie kłosów jest znacznie bardziej efektywne. Tak prawdopodobnie było też w neolicie, na początkowych etapach udomawiania ryżu. Analizy wykazały bowiem, że w późnej fazie istnienia kultury Shangshan (9000–8400 lat temu) udomowiona odmiana nie zrzucająca ziaren stanowiła tam jedynie 8,7% całości upraw. Ludność kultury Shangshan miała więc do czynienia z nierównomiernie dojrzewającym ryżem pozbywającym się dojrzałych ziaren. Podczas zbiorów pozyskiwano więc same kłosy.
Rosnąca presja antropogeniczna za czasów kultury Kuahuqiao prawdopodobnie przyczyniła się do użycia metody sierpa. Przed około 8000 lat ludność Kuahuqiao opracowała system uprawy ryżu na trawiastych terenach podmokłych, kontrolując przepływ wody i selektywnie wypalając roślinność. W ten sposób mogło dojść do bardziej równomiernego dojrzewania ryżu i lepszego wzrostu, co umożliwiało ścinanie całych roślin.
Obie metody zbioru prowadziły zaś do pojawienia się nieświadomej presji selekcyjnej na ryż. Na początku procesu udomowienia tej rośliny zbiory musiały być powtarzane wielokrotnie w ciągu roku, a im później ich dokonywano, tym większy był odsetek ziarna z roślin niezrzucających nasion. Jeśli ziarno z późniejszych zbiorów było następnie wykorzystywane do zasiewów, to w ten sposób pojawiła się presja, w wyniku której doszło do wyselekcjonowania roślin, które nie zrzucały ziarna.
Symulacje wskazują, że używanie sierpa podczas zbiorów doprowadziłoby do bardzo szybkiej selekcji ryżu. Zakończyłaby się ona zaledwie w ciągu dwóch wieków. Tymczasem z danych archeobotanicznych wiemy, że proces udomowienia ryżu trwał około 5000 lat. Było to prawdopodobnie spowodowane czynnikami praktycznymi i kulturowymi. Bez odpowiedniej wiedzy ludzie mogli nie przechowywać ziaren z późniejszych zbiorów, by je wysiać, nie dokonywali celowego wyboru. Mogło to znacząco opóźnić udomowienie ryżu, tym bardziej, że przez tysiące lat nie stanowił on ważnego składnika diety, gdyż w dolnym biegu Jangcy istniało wiele bogatych źródeł pożywienia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Większość szczepionek wymaga wielokrotnego podania przed osiągnięciem maksymalnej odporności przez osobę zaszczepioną. Badacze z MIT postanowili zaradzić temu problemowi i opracowali mikrocząstki, które można dopasować tak, by uwalniały swoją zawartość w określonych momentach. W ten sposób mikrocząstki wprowadzone do organizmu podczas pierwszego szczepienia, samodzielnie uwalniałyby w określonym czasie dawki przypominające.
Tego typu szczepionka byłaby szczególnie przydatna podczas szczepień dzieci w tych regionach świata, gdzie dostęp do opieki medycznej jest utrudniony. Podanie kolejnych dawek nie wymagałoby wówczas trudnego organizacyjnie i logistycznie spotkania z lekarzem czy pielęgniarką.
Nasza platforma może być stosowana do wszelkich typów szczepionek, w tym do rekombinowanych szczepionek antygenowych, bazujących na DNA czy RNA. Zrozumienie procesu uwalniania szczepionki, który opisaliśmy w naszym artykule, pozwoliło na poradzenie sobie z problemem niestabilności szczepionki, który może pojawić się w czasem, mówi Ana Jaklenec z Koch Institute for Integrative Cancer Research na MIT. Twórcy nowej platformy dodają, że można ją dostosować do podawania innych środków, np. leków onkologicznych czy preparatów używanych w terapii hormonalnej.
Zespół z MIT już w 2017 roku opisał nową technikę produkcji pustych mikrocząsteczek z PLGA. To biokompatybilny polimer, który jest od dłuższego czasu zatwierdzony do stosowania w implantach, protezach czy niciach chirurgicznych. Technika polega na stworzeniu silikonowych matryc, w którym PLGA nadaje się kształt przypominający filiżanki oraz pokrywki. Następnie „filiżanki” z PLGA można wypełniać odpowiednią substancją, przykryć pokrywką i delikatnie podgrzać, by „filiżanka” i pokrywka się połączyły, zamykając substancję w środku.
Teraz naukowcy udoskonalili swoją technikę, tworząc wersję, pozwalającą na uproszczoną i bardziej masową produkcję cząsteczek. W artykule opublikowanym na łamach Science Advances opisują, jak dochodzi do degradacji cząsteczek w czasie, co powoduje uwalnianie zawartości „filiżanek” oraz w jaki sposób zwiększyć stabilność szczepionek zamkniętych w cząsteczkach. Chcieliśmy zrozumieć mechanizm tego, co się dzieje oraz w jaki sposób informacja ta pomoże nam na ustabilizowanie szczepionek, mówi Jaklenec.
Badania pokazały, że PLGA z którego zbudowane są mikrocząsteczki, jest stopniowo rozbijany przez wodę. Materiał staje się stopniowo porowaty i bardzo szybko po pojawieniu się pierwszych porów, rozpada się, uwalniając zawartość „filiżanek”.
Zrozumieliśmy, że szybkie tworzenie się porów jest kluczowym momentem. Przez długi czas nie obserwujemy tworzenia się porów. I nagle porowatość materiału wzrasta i dochodzi do jego rozpadu, dodaje jeden z badaczy, Morteza Sarmadi. Po tym odkryciu naukowcy zaczęli badać, jak różne elementy, w tym wielkość i kształt cząstek czy skład polimeru, wpływają na formowanie się porów i czas uwalniania zawartości. Okazało się, że kształt i wielkość cząstek nie mają wielkiego wpływu na uwalnianie zawartości. Decydujący okazał się skład polimeru i grupy chemiczne do niego dołączone. Jeśli chcesz, by zawartość „filiżanek” uwolniła się po 6 miesiącach, musisz użyć odpowiedniego polimeru, a jeśli ma się uwolnić po 2 dniach, to trzeba użyć innego polimeru. Widzę tutaj szerokie pole do zastosowań, dodaje Sarmadi.
Osobnym problemem jest stabilność środka zamkniętego w mikrocząsteczkach. Gdy woda rozbija PLGA produktami ubocznymi tego procesu są m.in. kwas mlekowy i kwas glikolowy, które zakwaszają środowisko. To zaś może doprowadzić do degeneracji leków zamkniętych w cząsteczkach. Dlatego też naukowcy z MIT prowadzą właśnie badania, których celem jest przeciwdziałanie zwiększenia kwasowości przy jednoczesnym zwiększeniu stabilności leków zamkniętych w „filiżankach”. Powstał też specjalny model komputerowy, który oblicza, jak mikrocząsteczka o konkretnej architekturze będzie ulegała rozpadowi w organizmie.
Korzystając z tego modelu naukowcy stworzyli już szczepionkę na polio, którą testują na zwierzętach. Szczepionkę na polio trzeba podawać od 2 do 4 razy, testy pokażą, czy po jednorazowym podaniu dojdzie do uwolnienia dawek przypominających w odpowiednim czasie.
Nowa platforma może być też szczególnie przydatna podczas leczenia nowotworów. Przeprowadzone wcześniej testy wykazały, że po jednorazowym wstrzyknięciu w okolice guza, zamknięty w mikrokapsułkach lek został uwolniony w kilkunastu dawkach na przestrzeni kilkunastu miesięcy i doprowadził do zmniejszenia guza i ograniczenia przerzutów u myszy.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Specjalistki z Międzyuczelnianego Wydziału Biotechnologii Uniwersytetu Gdańskiego i Gdańskiego Uniwersytetu Medycznego - prof. Krystyna Bieńkowska-Szewczyk, dr Katarzyna Grzyb i mgr Anna Czarnota - pracują nad szczepionką przeciw zakażeniom spowodowanym wirusami zapalenia wątroby typu C i B (HCV i HBV). Urząd wydał już decyzję o przyznaniu patentu na ich wynalazek ("Chimeryczne cząsteczki wirusopodobne eksponujące sekwencje antygenowe wirusa HCV do zastosowania w leczeniu prewencyjnym zakażenia wirusem HCV i/lub HBV").
Szczepionka na wagę złota
HCV stanowi poważny problem medyczny. Wg Głównego Inspektoratu Sanitarnego (GIS), szacuje się, że co roku 1,4 mln zgonów jest spowodowanych odległymi następstwami przewlekłych zakażeń wirusami wywołującymi wirusowe zapalenie wątroby B lub C (marskość, rak wątrobowokomórkowy). WZW C [wirusowe zapalenie wątroby typu C] jest główną przyczyną raka wątroby w Europie i USA. W tych regionach świata WZW C jest najczęstszym powodem dokonywania przeszczepów wątroby.
Niestety, mimo badań nie ma jeszcze skutecznej szczepionki. Główną przeszkodą jest duża zmienność genetyczna HCV. Z tego powodu idealna szczepionka powinna wzbudzać odpowiedź immunologiczną przeciw najbardziej konserwowanym fragmentom białek wirusowych.
Gdański wynalazek
Wynalazek dotyczy rekombinowanych cząstek wirusopodobnych eksponujących na swojej powierzchni wybrane sekwencje antygenowe pochodzące z wirusa zapalenia wątroby typu C do zastosowania jako immunogenna szczepionka przeciwko zakażeniom spowodowanym wirusami zapalenia wątroby typu C i/lub B – wyjaśnia prof. Bieńkowska-Szewczyk.
Wynalazek powstał w ramach realizacji projektu NCN Preludium 12. Jego szczegóły opisano w pracy eksperymentalnej pt. "Specific antibodies induced by immunization with hepatitis B virus-like particles carrying hepatitis C virus envelope glycoprotein 2 epitopes show differential neutralization efficiency".
Dr Grzyb tłumaczy, że cząstki wirusopodobne cieszą się obecnie dużym zainteresowaniem, gdyż są bardzo podobne do wirusów, stąd też wynika ich wysoka immunogenność. Nie są jednak wirusami, bo nie zawierają materiału genetycznego wirusa, a tym samym nie mają zdolności do namnażania.
Zdolność tworzenia cząstek wirusopodobnych ma małe białko powierzchniowe wirusa zapalenia wątroby typu B (ang. hepatitis B virus small surface protein, sHBsAg). sHBsAg jest wykorzystywane w szczepionkach chroniących przed zakażeniem wirusem zapalenia wątroby typu B. Jak wyjaśniono w opisie projektu na stronie Narodowego Centrum Nauki, ze względu na obecność w strukturze białka sHBsAg silnie immunogennej, hydrofilowej pętli dobrze tolerującej insercje nawet dużych fragmentów obcych białek, sHBsAg było wielokrotnie proponowane jako nośnik obcych antygenów.
W naszym wynalazku wyeksponowanie silnie konserwowanych fragmentów białek wirusa HCV na powierzchni cząstek wirusopodobnych opartych na białku sHBsAg [w hydrofilową pętlę białka sHBsAg wstawiono silnie konserwowane sekwencje glikoproteiny E2 wirusa HCV] pozwoliło na stworzenie biwalentnych immunogenów wzbudzających odpowiedź zarówno przeciwko wirusowi HCV, jak i HBV. W przyszłości nasze rozwiązanie mogłoby być wykorzystane jako skuteczna szczepionka nowej generacji chroniąca przed zakażeniem tymi groźnymi patogenami - podsumowuje mgr Anna Czarnota.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na ospę prawdziwą, jedną z najbardziej śmiercionośnych i najdłużej trapiących ludzkość chorób, nie zapada obecnie nikt. Ostatnie znane przypadki naturalnej infekcji miały miejsce w 1977 roku w Somalii. Natomiast ostatnimi ofiarami ospy było dwoje Brytyjczyków. W 1978 roku fotograf medyczna Janet Parker zaraziła się ospą na University of Birmingham. Obwiniany o jej chorobę profesor Henry Bedson, który prowadził badania nad wirusem ospy, popełnił samobójstwo. Oboje zmarli w tym samym dniu.
W 1980 roku WHO ogłosiła, że świat jest wolny od ospy prawdziwej. To jak dotychczas jedyny przypadek w historii, kiedy dzięki świadomemu wysiłkowi ludzkości udało się zlikwidować (eradykować) chorobę zakaźną trapiącą ludzi. Inną taką chorobą zakaźną jest księgosusz (pomór bydła), ogłoszony chorobą eradykowaną w 2010 roku.
Jak to się jednak stało, że istniejąca od tysiącleci ospa prawdziwa, która w samym tylko XX wieku zabiła 300 milionów osób przestała stanowić zagrożenie? Odpowiedzią są szczepienia. To właśnie dzięki nim i ogłoszonemu w 1967 roku programowi jej eradykacji nie musimy obawiać się tej śmiercionośnej choroby.
Nieco historii
Ludzkość od dawna wiedziała, że jeśli komuś udało się przeżyć ospę – a nie było to takie pewne, gdyż np. w XVIII wieku zabijała ona 20–60 procent zarażonych – stawał się odporny na kolejną infekcję. Wiedzę tę wykorzystywano w praktyce. Już w 430 roku p.n.e. ozdrowieńcy byli wzywani do opieki nad chorymi.
Pojawiła się koncepcja inokulacji. To celowe wprowadzanie do organizmu, np. poprzez nacięcie na skórze, wydzielin osoby chorej, ale chorującej w stopniu łagodnym. Alternatywnym sposobem było sproszkowanie strupów ofiary ospy i wdmuchnięcie ich do nosa osoby zdrowej. Takie działania powodowały, że człowiek co prawda chorował, ale zwykle przechodził chorobę łagodniej. Jedynie około 2% inokulowanych osób rozwijało poważną infekcję i umierało czy stanowiło zagrożenie dla innych. Ryzyko było więc wyraźnie mniejsze.
Pod koniec XVIII wieku Edward Jenner, angielski lekarz, który sam jako dziecko był inokulowany, zaczął zastanawiać się, jak to się dzieje, że kobiety zajmujące się zawodowo dojeniem krów, nie chorują i nie umierają na ospę. Wszystko wskazywało na to, że mają one kontakt z łagodną dla człowieka ospą krową (krowianką), i gdy się nią zarażą, są chronione przed śmiertelną ospą prawdziwą. Jenner postanowił przetestować tę koncepcję. W 1796 roku materiałem pobranym od kobiety zarażonej krowianką inokulował 8-letniego chłopca, a kilka tygodni później inokulował go materiałem od osoby chorującej na ospę. U chłopca nie pojawiły się żadne oznaki choroby. Kolejne eksperymenty wykazały, że taka procedura jest znacznie bardziej bezpieczna od standardowej inokulacji. Tym samym Jenner zapoczątkował epokę szczepień, wprowadzania do organizmu zdrowego człowieka znacznie słabiej działającego patogenu, który uodparnia nas na działanie zjadliwego, niebezpiecznego patogenu.
Są szczepionki, są i antyszczepionkowcy
Metoda Jennera szybko zdobywała popularność zarówno wśród elit jak i zwykłych obywateli. Jenner nazwał całą procedurę vaccination (szczepienie) od łacińskiego vacca (krowa) i vaccinia (krowianka). Jednak już kilka lat później pojawili się pierwsi antyszczepionkowcy. Sceptycyzm wobec metody Jennera wynikał głównie z nieufności i niewiedzy. Do metody Jennera podchodzono bowiem nieufnie na tych terenach, gdzie krowianka nie występowała, ludzie nie znali więc ochronnych skutków infekcji tą chorobą.
Opublikowano książeczkę, w której krowiankę przedstawiano jako niebezpieczną chorobę i opisywano rzekome przypadki zarażenia ludzi „krowim syfilisem” w wyniku szczepień. Po publikacji zaczęły pojawiać się informacje o kolejnych przypadkach „krowiego syfilisu”, których to autor książeczki nie omieszkał umieścić w kolejnym wydaniu. Ostrzegał też, że szczepienie to eksperyment medyczny, prowadzony bez odpowiedniego rozwagi.
Kolejny tego typu tekst został opublikowany pod pseudonimem „R. Squirrel, doktor medycyny” przez aptekarza i politycznego radykała Johna Gale'a Johnesa. Twierdził on, że wcześniej prowadzona inokulacja była w pełni bezpieczna, a Jenner tak naprawdę zaraża ludzi skrofulozą (gruźlicą węzłów chłonnych). W jeszcze innym dziele opisano przypadki trzech pacjentów, którzy zmarli w wyniku sepsy po szczepieniu – co nie może dziwić biorąc pod uwagę ówczesny poziom higieny – oraz dziecka, u którego rok po szczepieniu pojawiły się na czole wielkie purpurowe bulwy. W jeszcze innych dziełach czytamy o świerzbie wywołanym rzekomo przez szczepienie, a całość zilustrowano rysunkiem chłopca, którego twarz zamieniła się w twarz wołu. Oczywiście w wyniku szczepienia.
Kukułką w szczepienia
Antyszczepionkowcy nie ograniczyli się jednak tylko do tego, Przez ponad 100 lat, walcząc z koncepcją Jennera, używali przykładu... kukułki. Otóż w 1788 roku Jenner opublikował wyniki swoich badań nad kukułkami, w których stwierdził, ze młode, wyklute z jaja podrzuconego przez kukułkę innemu gatunkowi, wyrzuca z gniazda młode tego gatunku. Wielu przyrodników uznało tę koncepcję za absurdalną. I antyszczepionkowcy przez dekady wykorzystywali opinię tych przyrodników, by zdyskredytować osiągnięcia Jennera na polu szczepień. W końcu w 1921 roku, dzięki wykorzystaniu fotografii potwierdzono, że Jenner miał rację co do kukułek. Podobnie zresztą, jak miał rację odnośnie szczepień.
Jak więc działają szczepionki?
Nasz układ odpornościowy możemy podzielić na dwie zasadnicze części: wrodzoną (nieswoistą) oraz adaptacyjną (swoista). Z odpornością wrodzoną się rodzimy. Otrzymujemy ją po matce i stanowi on pierwszą linię obrony naszego organizmu. Układ odpornościowy atakuje wszystko, co uzna za obce. Odpowiedź nieswoista następuje natychmiast, a do akcji wkraczają granulocyty, makrofagi czy monocyty. Jednak nie jest to reakcja zbyt precyzyjna i nie zawsze w jej wyniku patogeny zostaną usunięte. Co więcej, ten rodzaj reakcji nie wytwarza pamięci immunologicznej.
Do tego, by organizm zapamiętał dany patogen potrzebna jest bardziej wyspecjalizowana odpowiedź swoista, kiedy to organizm wytwarza przeciwciała zwalczające konkretne zagrożenie. To bardziej precyzyjne uderzenie w patogen, jednak od momentu infekcji do pojawienia się skutecznej odpowiedzi swoistej musi minąć nieco czasu. Gdy już jednak układ odpornościowy wytworzy odpowiedź swoistą i zwalczy patogen, zapamiętuje go i przy kolejnej infekcji szybko przystępuje do działania, wyposażony już w specjalistyczne narzędzia do walki z konkretnym wirusem czy bakterią.
Patogeny, czy to wirusy, bakterie, grzyby czy pasożyty, składają się z wielu różnych części, które często są charakterystyczne zarówno dla nich, jak i wywoływanych chorób. Takie części, które prowokują organizm do wytworzenia przeciwciał nazywa się antygenami. Gdy układ odpornościowy po raz pierwszy napotyka na antygen, potrzebuje nieco czasu, by wytworzyć przeciwciała. Jednak gdy już je uzyska, produkuje też specyficzne dla nich komórki pamięci. Komórki te pozostają w organizmie nawet po zwalczeniu patogenu. Dlatego też gdy zetkniemy się z nim po raz kolejny, nasz układ odpornościowy szybko przystępuje do ataku.
Szczepienia zaś mają służyć wcześniejszemu nauczeniu układu odpornościowego rozpoznawania patogenu, bez potrzeby czekania na tę pierwszą infekcję, która może przecież okazać się bardzo niebezpieczna. Dzięki nim nasz układ odpornościowy uczy się bowiem, jak rozpoznać napastnika i gdy zetknie się z nim powtórnie, szybciej i łatwiej sobie z nim poradzi. Wszystkie szczepionki działają poprzez wcześniejsze – bezpieczne i kontrolowane – wystawienie organizmu na kontakt z patogenem lub jego fragmentem po to, by w przypadku ponownego kontaktu, układ odpornościowy był przygotowany do zwalczania wirusa lub bakterii.
Rodzaje szczepionek
Obecnie nikt nie wdmuchuje nam do nosa sproszkowanych strupów i nie nacina nam skóry, by wprowadzić materiał pobrany od chorej osoby. Stosowane są znacznie skuteczniejsze i bezpieczniejsze metody.
Jedną z nich są szczepionki z żywym, atenuowanym wirusem lub bakterią. Zawierają one atenuowany czyli osłabiony patogen, który nie stanowi zagrożenia dla osób o prawidłowo działającym układzie odpornościowym. Jako, że takie patogeny są najbliższe temu, z czym możemy się zetknąć, szczepionki tego typu są świetnymi nauczycielami dla układu odpornościowego. W ten sposób szczepi się na odrę, świnkę czy różyczkę. To bardzo efektywny sposób zabezpieczenia przed chorobami. Jednak ze względu na to, że mimo wszystko mamy tutaj do czynienia z żywym patogenem, lepiej dmuchać na zimne. Szczepionek takich nie podaje się więc osobom o osłabionym układzie odpornościowym czy kobietom w ciąży.
Istnieją również szczepionki z inaktywowanym, zabitym, patogenem. Nie są one jednak tak skuteczne, jak szczepionki z patogenem żywym, dlatego zwykle wymagają podania kilku dawek. Za przykład mogą tutaj służyć szczepionki przeciwko polio czy wściekliźnie.
Dwa wymienione tutaj rodzaje to starsze typy szczepionek. Nowsze rodzaje zawierają nie całe patogeny, a ich fragmenty, antygeny. Szczepionki takie są bardziej jednorodne, podobne do siebie, niż szczepionki z patogenami. Są w wyższym stopniu powtarzalne i powodują mniej działań niepożądanych. Jednak zwykle też wywołują słabszą odpowiedź układu odpornościowego, niż szczepionki zawierające całe bakterie czy wirusy.
Najnowszym rodzajem szczepionek, o których wszyscy usłyszeliśmy przy okazji pandemii COVID-19, są szczepionki wektorowe i mRNA. Oba rodzaje nie zawierają ani patogenu, ani jego antygenu. Zawierają zaś instrukcję, w jaki sposób nasz organizm ma sobie taki antygen samodzielnie wyprodukować.
W szczepionkach wektorowych nośnikiem instrukcji – wektorem – jest zmodyfikowany wirus, pozbawiony genów powodujących chorobę oraz pozbawiony genów umożliwiającym mu namnażanie się. Do genomu tego nieszkodliwego wirusa wprowadzana jest dodatkowo instrukcja produkcji antygenu drobnoustroju, przed którym chcemy się chronić. Zatem, w przeciwieństwie do prawdziwej infekcji, do organizmu nie trafia pełny materiał genetyczny wirusa, a jego fragment. Nie ma zatem możliwości, by nasze komórki wyprodukowały wirusa. To, co się dzieje po szczepieniu, bardzo przypomina prawdziwą infekcję.
Wektor wnika do komórek i wprowadza genetyczną instrukcję produkcji antygenu do jądra komórek naszego organizmu. Jako, że nasz wektor pozbawiony jest możliwości namnażania się, nie rozprzestrzenia się po organizmie. Ponadto co prawda jego DNA jest wprowadzane do jądra komórkowego, ale nie jest włączane do naszego genomu i nie replikuje się w kolejnych cyklach komórkowych. Na podstawie tego DNA powstaje RNA, które przemieszcza się z jądra komórkowego do cytoplazmy, tam staje się matrycą do produkcji antygenu. Ten zaś jest prezentowany na powierzchni „zakażonej” komórki. Układ odpornościowy rozpoznaje wrogi antygen, zwalcza go, zabijając komórkę i jednocześnie zapamiętuje antygen. Następnym razem będzie gotowy by szybko zaatakować wirusa. Zarówno ekspresja genów wirusa, jak i odpowiedź immunologiczna są krótkotrwałe i ograniczone do miejsca wstrzyknięcia szczepionki. To jednak wystarczy, by układ odpornościowy zapamiętał wroga na przyszłość.
Szczepionki wektorowe mają zarówno wady, jak i zalety. Wywołują silną odpowiedź immunologiczną, na której nam zależy, a technologia ich produkcji jest dobrze opanowana. Jeśli jednak organizm już wcześniej zetknął się z wirusem użytym w roli wektora, to może szybko zacząć go zwalczać, przez co skuteczność szczepionki będzie niższa. Ponadto produkcja takich szczepionek jest dość skomplikowana.
Powyższy problem rozwiązują szczepionki mRNA. Ich zastosowanie polega na wstrzyknięciu do organizmu wolnego (tj. niezwiązanego z nośnikiem, np. wirusem) materiału genetycznego w formie mRNA, który jest następnie pobierany przez komórki i poddawany ekspresji.
Po wniknięciu do organizmu mRNA ze szczepionki jest przetwarzane przez organizm tak samo, jak „własne” mRNA z naszych komórek, tzn. na podstawie zawartej w nim instrukcji wytwarzane jest białko o ściśle określonej budowie, symulującej immunologiczną „sygnaturę” danego patogenu. Białko takie jest wykrywane przez układ immunologiczny jako obce i powoduje wytworzenie odpowiedzi oraz pamięci immunologicznej. Dzięki temu kiedy kolejny raz dojdzie do kontaktu z takim samym antygenem (tym razem na powierzchni wirusa z „prawdziwej” infekcji), reakcja będzie szybka i skuteczna – tak bardzo, że często nawet nie będziemy świadomi, że organizm właśnie zwalczył śmiertelne zagrożenie.
Takie RNA w ogóle nie wnika do jądra komórkowego, zatem nie ma możliwości włączenia się do DNA naszych komórek ani replikacji. Prowadzi ono wyłącznie do wytworzenia antygenów, po czym ulega degradacji. Również i tutaj mamy do czynienia z krótkotrwałą obecnością w naszym organizmie materiału genetycznego wirusa, a jego pozostałości są w naturalny sposób szybko usuwane. Pozostaje nam po nim jedynie pamięć układu odpornościowego, przygotowanego dzięki szczepionkom na reakcję w przypadku prawdziwej infekcji.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.