Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Papież Benedykt XVI jest zwolennikiem większej dbałości o naturalne zasoby naszej planety. Dlatego też Watykan postanowił zasilać część swoich budynków ogniwami słonecznymi. Już w przyszłym roku cementowy dach audytorium Pawła VI zostanie zastąpiony dachem z ogniw fotowoltanicznych.

Audytorium mieści 6300 osób i jest wykorzystywane podczas audiencji generalnych w zimie i przy złej pogodzie. Odbywają się tam również koncerty. Po zmianie dachu budynek będzie sam produkował energię, która wystarczy do jego oświetlenia oraz ogrzania lub ochłodzenia. Energia, która nie zostanie wykorzystana przez samo audytorium, posłuży do oświetlenia i ogrzania innych watykańskich budynków.

Przeprowadzono już odpowiednie analizy, które wykazały, że cała inwestycja jest opłacalna.

Modernistyczne audytorium powstało w 1969 roku. Architekci nie chcą, by nowy dach zmienił jego wygląd. Dlatego też będzie on miał identyczny kształt i niemal identyczny kolor co dach obecny.

Watykan rozważa też wymianę innych dachów. Nie dotyczy to, oczywiście, dachów zabytkowych budowli.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Caltech (California Institute of Technology) poinformował właśnie, że od roku 2013 Donald Bren – najbogatszy deweloper w USA – wraz z żoną Brigitte przekazali uczelni ponad 100 milionów dolarów na prace nad pozyskiwaniem energii słonecznej w przestrzeni kosmicznej i przesyłaniem jej na Ziemię. Dzięki nim w roku 2022 lub 2023 w przestrzeń kosmiczną trafi pierwsza testowa instalacja.
      Majątek 89-letniego Brena jest wyceniany na 15–16 miliardów dolarów. Dorobił się olbrzymich pieniędzy na budowie nieruchomości. Jest skrytym człowiekiem, rzadko udziela wywiadów. Przeznacza duże kwoty na działalność charytatywną. Wiadomo, że setkami milionów dolarów wspiera edukację, naukę i ochronę środowiska. W ciągu ostatnich 30 lat przekazał też 220 km2 terenów na potrzeby parków, rezerwatów i terenów rekreacyjnych. O tym, że woli pozostawać w cieniu może świadczyć sam fakt, że o finansowaniu przez Brena Space Solar Power Project poinformowano dopiero po 8 latach.
      Wysoka orbita okołoziemska to bardzo dobre miejsce do pozyskiwania energii słonecznej. Słońce nigdy tam nie zachodzi, nie formują się chmury. Od dawna jest ona przedmiotem zainteresowania inżynierów. Jednak dotychczasowe projekty były nierealistyczne. Zbyt wielkie, by mogły się udać. Zakładały bowiem zbudowanie olbrzymich wielokilometrowych struktur pozyskujących energię, która następnie za pomocą laserów lub mikrofal byłaby przesyłana na Ziemię. Budowa takich struktury wymagałaby startów setek rakiet.
      Tym, czego naprawdę potrzebowaliśmy była zmiana paradygmatu technologicznego, mówi profesor Harry Atwater, kierujący Space Solar Power Project. Zamiast urządzenia, które waży kilogram na metr kwadratowy, możemy obecnie stworzyć system o macie 100-200 gramów na metr kwadratowy i mamy plany zejścia z masą do 10-20 gramów na m2, informuje uczony.
      Największa zmiana w myśleniu zaszła w samej budowie paneli słonecznych. Naukowcy z Caltechu budują modułowe panele. Każde z lekkich galowo-arsenkowych ogniw jest mocowane do „kafelka” o powierzchni 100 cm2. Każdy z „kafelków” – i to właśnie ma być kluczem do sukcesu – jest indywidualną stacją słoneczną, wyposażoną z fotowoltaikę, elektronikę oraz przekaźnik mikrofalowy. „Kafelki” będą łączone w większe moduły o powierzchni kilkudziesięciu metrów kwadratowych, a tysiące takich modułów będą tworzyły heksagonalną stacją o kilkukilometrowej długości. Jednak moduły nie będą ze sobą połączone. Nie będzie ciężkich kabli czy rusztowań.
      Myślimy o tym jak o ławicy ryb. To zestaw identycznych niezależnych elementów latających w formacji, mówi Atwater.
      Transmisja na Ziemię będzie odbywała się za pomocą mikrofal. Sygnały z poszczególnych „kafelków” będą synchronizowane, co pozwoli na wycelowanie ich w naziemny odbiornik bez potrzeby używania ruchomych części. Całość zaś będzie bezpieczna. Promieniowanie mikrofalowe jest promieniowaniem niejonizującym, a gęstość przesyłanej energii będzie taka, jak gęstość energii słonecznej.
      Miną jednak lata, zanim na co dzień będziemy korzystali z tego typu rozwiązań. Wcześniej czy później przesyłanie energii z kosmosu na Ziemię stanie się codziennością. Do optymizmu skłaniają zarówno spadające koszty lotów w kosmos, jak i intensywne prace, prowadzone np. przez agencje kosmiczne z USA, Chin czy Japonii.
      Niewykluczone jednak, że pierwsze urządzenia zasilane w ten sposób nie będą znajdowały się na Ziemi, a w kosmosie. Może się bowiem okazać, że przesyłanie energii mikrofalowej z farm orbitalnych do satelitów czy stacji kosmicznych jest rozwiązaniem bardziej praktycznym, niż konieczność wyposażania satelitów i stacji we własne panele słoneczne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Watykan zakazuje sprzedaży plastikowych przedmiotów jednorazowego użytku. Na terenie państwa tego typu przedmioty można będzie sprzedawać wyłącznie do wyczerpania obecnych zapasów w sklepach.
      Poczas gdy Unia Europejska zapowiedziała, że chce wprowadzić zakaz sprzedaży jednorazowych przedmiotów plastikowych od roku 2021 Watykan już od pewnego czasu ogranicza użycie takich przedmiotów, a wkrótce w ogóle nie będą one sprzedawane, poinformował Rafael Ignacio Tornini, szef wydziału odpowiedzialnego w Watykanie za utrzymanie ogrodów i sprzątanie odpadów.
      Próbujemy poddawać recyklingowi jak najwięcej plastiku, a obecnie ograniczamy sprzedaż plastikowych przedmiotów jednorazowego użytku, powiedział Tornini w wywiadzie dla agencji ANSA.
      Wśród przedmiotów, których sprzedaży zakazano znajdują się torby, butelki na wodę, plastikowe sztućce, słomki czy balony.
      Watykan od dawna dba o ekologię. Najbardziej znanym tego przejawem stało się zainstalowanie w 2008 roku panel słonecznym na Auli Pawła VI. W tym samym roku ruszył też program segregowania odpadów. Obecnie 55% odpadów z Watykanu jest odpowiednio segregowanych i poddawanych recyklingowi. Celem władz Watykanu jest osiągnięcie w ciągu 2-3 lat zalecanego przez UE poziomu 70–75 procent segregowanych i przetwarzanych odpadów.
      Watykan ma mniej niż 1000 obywateli, jednak do tego należy doliczyć kilka tysięcy pracowników oraz miliony turystów rocznie. Rocznie w Watykanie zbieranych jest około 1000 ton śmieci.
      Przed pięcioma miesiącami rozpoczęto tam specjalny program zbierania odpadów organicznych. Są one zbierane z gospodarstw i domów Watykanu, miesza się je z odpadami zielonymi i tworzy kilkaset ton nawozu, który jest wykorzystywany w ogrodach Watykanu oraz papieskiej rezydencji w Castel Gandolfo.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Arcybiskup Giovanni Angelo Becciu, substytut do spraw ogólnych w Sekretariacie Stanu Stolicy Apostolskiej, uczestniczył na polecenie papieża w ceremonii odesłania krokodyla kubańskiego (Crocodylus rhombifer) na wyspę przed zaplanowaną na koniec marca wizytą następcy św. Piotra w Meksyku i na Kubie.
      Krokodyl został przeszmuglowany w skarpetce do Włoch (celnicy zauważyli go i skonfiskowali). Zyskał miano papieskiego, bo przedstawiciele rzymskiego zoo wzięli go ze sobą na audiencję do Benedykta XVI. Niczego nieświadomy gad stał się symbolem dobrej woli Stolicy Apostolskiej. Oddanie go prawowitemu właścicielowi przed wizytą samego zwierzchnika Kościoła katolickiego ma bowiem ponoć wymiar symboliczny. Niewykluczone, że złagodzi to nieco napięcie w stosunkach obu państw. Specjaliści wyrażają też nadzieję, że gest zwróci uwagę na sytuację krytycznie zagrożonych wyginięciem krokodyli kubańskich i wspomoże wysiłki osób zajmujących się ich ochroną. C. rhombifer występuje jedynie na 2 obszarach: na bagnie Zapata i na bagnach Isla de Juventud.
      Wybór Becciu nie jest przypadkiem, bo przez prawie 2 lata pracował on w nuncjaturze na Kubie. Duchowny życzył krokodylowi dobrej podróży i wyraził nadzieję, że zostanie przyjęty przez Kubańczyków równie ciepło jak sam Benedykt XVI.
      W ceremonii pożegnania, którą zorganizowano z prawdziwą pompą, uczestniczyły dzieci machające watykańskimi, kubańskimi i włoskimi flagami. Drewniana skrzynia z gadem odjechała z rzymskiego ogrodu zoologicznego w czarnej limuzynie. Na Kubie zwierzę trafi najpierw do kubańskiego zoo, a potem zostanie wypuszczone na wolność.
       
       
    • przez KopalniaWiedzy.pl
      Przechowywanie energii słonecznej w postaci chemicznej ma tę przewagę nad przechowywaniem jej w elektrycznych akumulatorach, że energię taką można zachować na długi czas. Niestety, taki sposób ma też i wady - związki chemiczne przydatne do przechowywania energii ulegają degradacji po zaledwie kilku cyklach ładowania/rozładowywania. Te, które nie degradują, zawierają ruten - rzadki i drogi pierwiastek. W 1996 roku udało się znaleźć molekułę - fulwalen dirutenu - która pod wpływem światła słonecznego przełącza się w jeden stan i umożliwia kontrolowane przełączanie do stanu pierwotnego połączone z uwalnianiem energii.
      W ubiegłym roku profesor Jeffrey Grossman wraz ze swoim zespołem z MIT-u odkryli szczegóły działania fulwalenu dirutenu, co dawało nadzieję na znalezienie zastępnika dla tej drogiej molekuły.
      Teraz doktor Alexie Kolpak we współpracy z Grossmanem znaleźli odpowiednią strukturę. Połączyli oni węglowe nanorurki z azobenzenem. W efekcie uzyskali molekułę, której właściwości nie są obecne w obu jej związkach składowych.
      Jest ona nie tylko tańsza od fulwalenu dirutenu, ale charakteryzuje się również około 10 000 razy większą gęstością energetyczną. Jej zdolność do przechowywania energii jest porównywalna z możliwościami baterii litowo-jonowych.
      Doktor Kolpak mówi, że proces wytwarzania nowych molekuł pozwala kontrolować zachodzące interakcje, zwiększać ich gęstość energetyczną, wydłużać czas przechowywania energi i - co najważniejsze - wszystkie te elementy można kontrolować niezależnie od siebie.
      Grossman zauważa, że olbrzymią zaletą termochemicznej metody przechowywania energii jest fakt, że to samo medium wyłapuje energię i ją przechowuje. Cały mechanizm jest zatem prosty, tani, wydajny i wytrzymały. Ma on też wady. W takiej prostej formie nadaje się tylko do przechowywania energii cieplnej. Jeśli potrzebujemy energii elektrycznej, musimy ją wytworzyć z tego ciepła.
      Profesor Grossman zauważa też, że koncepcja, na podstawie której stworzono funkcjonalne nanorurki z azobenzenem jest ogólnym pomysłem, który może zostać wykorzystany także w przypadku innych materiałów.
      Podstawowe cechy, jakimi musi charakteryzować się materiał używany do termochemicznego przechowywania energii to możliwość przełączania się w stabilne stany pod wpływem ciepła oraz istnienie odkrytego przez Grossmana w ubiegłym roku etapu przejściowego, rodzaju bariery energetycznej pomiędzy oboma stabilnymi stanami. Bariera musi być też odpowiednia do potrzeb. Jeśli będzie zbyt słaba, molekuła może samodzielnie przełączać się pomiędzy stanami, uwalniając energię wtedy, gdy nie będzie ona potrzebna. Zbyt mocna bariera spowoduje zaś, że pozyskanie energii na żądanie będzie trudne.
      Zespół Grossmana i Kolpak szuka teraz kolejnych materiałów, z których można będzie tworzyć molekuły służące do termochemicznego przechowywania energii.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...