Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Uczonym z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST), japońskiego NNT oraz Uniwersytetu Stanforda udało się przesłać kwantowy klucz na rekordową odległość 200 kilometrów. Podczas eksperymentu wykorzystano przede wszystkim obecnie używane technologie i urządzenia. Przeprowadzono go w laboratorium Uniwersytetu Stanforda, a sam klucz przesłano 200-kilometrowym światłowodem nawiniętym na szpulę. Przy okazji ustanowiono rekord prędkości przesyłania kwantowych kluczy szyfrujących. Dane generowano z prędkością 1 gigabita na sekundę, co oznacza, że w ciągu sekundy przesłano 10 miliardów impulsów świetlnych.

Należy jednak zwrócić uwagę na fakt, że sama transmisja odbywała się znacznie wolniej. Przesyłany sygnał był bowiem po drodze korygowany i zabezpieczany. Ponadto nie szyfrowano nim żadnej wiadomości, więc nie można mówić tutaj o testowaniu kompletnego systemu QKD (quantum key dystribution – dystrybucja kwantowego klucza). Uczeni chcieli przede wszystkim sprawdzić teoretyczną wydajność systemu oraz przetestować nowe rozwiązania technologiczne.

Głównym celem eksperymentu było sprawdzenie w praktyce działania superszybkich rosyjskich detektorów pojedynczych fotonów. Rosyjskie detektory charakteryzują się niskim współczynnikiem błędów oraz wyjątkowo szybkim czasem przejścia elektronu ze stanu wzbudzenia do stanu spoczynku. Zmiana stanów odbywa się w ciągu bilionowych części sekundy.

Eksperyment dowiódł, że możliwe jest szybkie generowanie kluczy kwantowych i przesyłanie ich na duże odległości. Testowany system sprawdziłby się w dużych miastach, więc firmy mogłyby korzystać z kryptografii kwantowej, która jest znacznie bezpieczniejsza od obecnie wykorzystywanych technik kryptograficznych, podczas przesyłania poufnych dokumentów pomiędzy sobą.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Japoński koncern NTT zademonstrował nowy standard Wi-Fi. Roboczo nazwany 802.11ac może przesyłać dane z prędkością 120 Mb/s do trzech odbiorników jednocześnie.
      Łącze wykorzystuje pasmo 5 GHz, a sygnał jest multipleksowany i demultipleksowany za pomocą technologii MIMO (Multiple Input Multiple Output). Celem NTT jest opracowanie technologii pozwalającej na przesłanie 1 gigabajta danych na sekundę. Takie przepustowości będą wkrótce potrzebne do streamingu wideo HD czy przesyłania obrazów 3D.
      Podczas prezentacji sygnał wysłano za pomocą sześciu anten, a odebrano za pomocą trzech. Technologia wykorzystana przez NTT wykorzystuje układy FPGA, które za pomocą odpowiednich algorytmów rozdzielają dane i przydzielają im miejsce w paśmie. Japońska firma twierdzi, że zamiast FPGA można użyć dedykowanego układu scalonego. Koncern ma zamiar zgłosić swoją technologię w celu standaryzacji przez Instytut Inżynierów Elektryków i Elektroników (IEEE). Nawet, jeśli 802.11ac zostanie uznana za standard to nie stanie się to przed rokiem 2013. Jednak urządzenia ją wykorzystujące mogą trafić na rynek wcześniej, podobnie jak to miało miejsce w przypadku innych standardów.
    • przez KopalniaWiedzy.pl
      Uczeni z amerykańskiego Narodowego Instytutu Standardów i Technologii (NIST) znaleźli sposób na znaczące udoskonalenie transmisyjnych elektroskopów elektronowych. Tego typu mikroskop rejestruje elektrony przechodzące przez próbkę. Ta z kolei musi mieć grubość mniejszą niż 0,1 mikrometra, co bardzo ogranicza zastosowanie mikroskopu.
      Eksperci z NIST przepuścili elektrony przez nanometrowej wielkości kratownicę. To spowodowało, że fale elektronowe przybrały kształt korkociągów i utrzymywały go w wolnej przestrzeni.
      Zjawisko takie pozwala mieć nadzieję na zbudowanie w niedalekiej przyszłości transmisyjnego mikroskopu elektronowego o rozdzielczości lepszej od mikroskopów optycznych, który ponadto będzie pracował z większą liczbą materiałów niż dotychczas. Spiralny kształt i moment kątowy elektronów pozwoli nam na pracę z różnymi materiałami, które dotychczas były niedostępne dla użytkowników transmisyjnych mikroskopów elektronowych. Wyposażenie mikroskopu w nanokratownicę podobną do tej, jakiej użyliśmy w naszym eksperymencie, pozwala na dramatyczne zwiększenie możliwości urządzenia tanim kosztem - mówi Ben McMorran, jeden z autorów badań.
      Eksperyment NIST nie jest pierwszym doświadczeniem tego typu, ale dał on najlepsze rezultaty. Kratownica jest znacznie mniejsza niż inne używane urządzenia, znacznie lepiej rozdziela fale elektronowe i nadaje elektronom 100-krotnie większy moment.
    • przez KopalniaWiedzy.pl
      Od dekad to krzem pozostaje głównym materiałem konstrukcyjnym elektroniki, mimo że jest to coraz trudniejsze, producenci coraz bardziej zwiększają gęstość upakowania krzemowych elementów, zachowując prawo Moore'a. Ale już niedługo zdolność krzemowej technologii do rozwoju skończy się nieodwracalnie: negatywne zjawiska towarzyszące miniaturyzacji zastopują ją najdalej za dziesięć lat, być może nawet wcześniej - z powodu wykładniczo rosnących kosztów wdrażania coraz precyzyjniejszych technologii.
      Materiałem, w którym od lat upatruje się kandydata na następcę krzemu jest grafen. Niestety, ze względu na całkowicie odmienne właściwości (nie do końca przy tym poznane) nie da się go tak po prostu użyć w miejsce krzemu, konieczne jest opracowanie technologii dosłownie od zera. Chociaż więc po grafenie oczekuje się, że pozwoli na tworzenie układów scalonych mniejszych i szybszych, na razie gra toczy się nie o to, żeby zrobić lepiej, ale żeby w ogóle zrobić cokolwiek.
       
      Od laboratorium do fabryki - daleka droga
       
      Przez długie lata większość badań koncentrowała się na tzw. grafenie eksfoliowanym. Pierwsze płatki grafenu uzyskano odrywając z grafitu pojedynczą warstwę atomów przy pomocy taśmy klejącej. To co wystarcza naukowcom dla producentów jest jednak niczym - im potrzeba materiału łatwego w wytwarzaniu i obróbce, pewnego, zachowującego się przewidywalnie i skalowalnego.
      Materiałem, w którym również upatrywano kandydata były węglowe nanorurki - rurki złożone z pojedynczej warstwy atomów węgla. Mimo zadziwiających właściwości ich praktyczne zastosowanie pozostaje żadne: trudno je wytwarzać w pożądany i przewidywalny sposób. Zajmujący się nanorurkami naukowiec Georgia Tech, Walt de Heer, uznał, że nigdy nie nadadzą się one do zastosowań przemysłowych, przynajmniej w dziedzinie elektroniki. Zauważył jednak, że skoro ich właściwości elektryczne wynikają głównie z istnienia pojedynczej warstwy atomów, praktyczniej będzie taką rurkę rozwinąć i rozpłaszczyć, czyli wyhodować na płaskiej powierzchni. Stąd wziął się pomysł, a potem technologia produkcji grafenu epitaksjalnego, czyli hodowanego na odpowiednio przygotowanej powierzchni. Technika ta pozwala na przeniesienie charakterystyki warstwy bazowej na strukturę atomową tworzonej warstwy epitaksjalnej. Materiałem bazowym jest powszechnie stosowany węglik krzemu, do którego można stosować znane już technologie wytwarzania elektroniki. Przez umiejętne podgrzewanie powoduje się migrację atomów krzemu, pozostawiając sam węgiel - czyli uzyskuje się precyzyjnie kontrolowaną warstwę grafenu. Tą metodą udało się wyprodukować siatkę składającą się z 10 tysięcy grafenowych tranzystorów na powierzchni 0,24 cm2 - to rekord, którym szczyci się Georgia Tech.
      Warstwy grafenu, jakie wytwarzane są w laboratoriach, poddawane są skrupulatnym badaniom. Epitaksjalny grafen dra de Heera zachowuje się niemal doskonale tak, jak wynika z teoretycznych symulacji, pozwalając zaobserwować oczekiwane właściwości, na przykład występowanie kwantowego efektu Halla.
      Obok prac nad skalowalnością procesu, równie ważne są prace nad tworzeniem struktur wielowarstwowych. Niedawno udało się wykazać, że dodawanie nowych warstw nie zakłóca właściwości warstw już istniejących. Ciekawostką jest to, że taki wielowarstwowy grafen jest czymś innym od grafitu: w graficie kolejne warstwy atomów obrócone są o 60º. W wielowarstwowym grafenie zaś o 30º - czyli jest to całkowicie nowy materiał.
      Epitaksjalne wytwarzanie grafenowych warstw pozwoliło ominąć jeszcze jedną technologiczną trudność. Podczas wykorzystywania innych technologii problemem były nierówne krawędzie nanoelementów. Ponieważ właściwości grafenu mocno zależą od jego kształtu (potrafi on nawet być raz przewodnikiem a raz półprzewodnikiem), jeśli krawędzie grafenowych elementów nie były idealnie gładkie, pojawiały się niepożądane opory w przepływie prądu, upływy itp. Technologia epitaksji pozwala zachować idealne krawędzie.
      Do ciekawostek należą odnalezione we współpracy z NIST (National Institute of Standards and Technology) właściwości grafenu pozwalające wpływać na jego właściwości przy pomocy precyzyjnie aplikowanych pól magnetycznych.
       
      Grafen - Concorde elektroniki
       
      Czy zatem grafen zastąpi krzem? Według zajmujących się nim naukowców po pierwsze nie tak szybko, po drugie nie do końca. Niekompatybilność właściwości starego i nowego materiału nie pozwoli tak po prostu przesiąść się na nowe technologie, które początkowo będą drogie. De Heer uważa, że przez długi czas krzem i grafen będą koegzystować - krzem w roli elektroniki popularnej i niedrogiej, grafen - do bezkompromisowych zastosowań, jak choćby bardzo zminiaturyzowane i szybkie układy, nie do osiągnięcia na bazie krzemu.
      Posługując się analogią sądzi on, że wchodzenie nowej technologii podobne będzie do rywalizacji lotnictwa z transportem morskim i kolejowym. Rozwijające się lotnictwo pasażerskie, pomimo wysokich cen, miało chętnych, dla których była ważniejsza szybkość. Do dziś jednak, mimo spadku cen i coraz większej masowości, stare metody transportu nie zanikły i wciąż się rozwijają.
    • przez KopalniaWiedzy.pl
      Świat zwierzęcy bardzo różni się sposobem odżywiania. Ssaki, do których należymy, bywają mięsożerne, roślinożerne lub wszystkożerne. Nawet u naszych najbliższych krewnych - naczelnych - sprawy mają się różnie. Tym trudniej orzec o sposobie odżywania ssaków już wymarłych. In dalej w przeszłość, tym trudniej, a z oczywistych powodów uczonych to bardzo interesuje. Naukowcy z Tel Avivu pracowali metodę pozwalającą na bardzo łatwą, szybką i pewną ocenę diety wymarłych ssaków na podstawie ich skamieniałości. Wystarcza im do tego... ząb.
      Autorem metody jest prof. Herzl Chai, wykładowca inżynierii mechanicznej na Tel Aviv University, współpracowali z nim amerykańscy naukowcy z George Washington University oraz U.S. National Institute of Standards and Technology (NIST).
      Metoda opiera się na analizie odprysków na szkliwie zęba, które zależą od struktury (rodzaju) i wielkości pokarmu oraz siły, z jaką zwierzę potrafi zacisnąć szczęki. To ostatnie również wyliczają z analizy śladów na szkliwie, co jest dużym osiągnięciem, ponieważ do tej pory do oceny siły zgryzu uczeni potrzebowali zachowanej całej czaszki. Od teraz wystarczy nawet jeden ząb, a ponieważ zęby są jedną z najlepiej zachowujących się pozostałości po wymarłych zwierzętach, trudno wręcz o metodę bardziej pożądaną.
      Opracowane równanie bierze pod uwagę wielkość zęba, grubość szkliwa, wielkość i głębokość rys, itd. - wiążąc wszystko w jedną całość. Metodę sprawdzono, oceniając zęby wielu obecnie żyjących gatunków zwierząt, wliczając to małpy człekokształtne.
      Naukowcy najbardziej cieszą się na możliwość określenia diety najwcześniejszych przodków człowieka, czyli pierwszych ssaków.
    • przez KopalniaWiedzy.pl
      Uczonym z Narodowego Instytutu Standardów i Technologii (NIST) udało się, jako pierwszym w historii, zaprezentować metodę konwersji pojedynczego fotonu wyemitowanego z kwantowej kropki w paśmie 1300 nm (bliska podczerwień) w foton charakterystyczny dla emisji fali o długości 710 nm (światło bliskie widzialnemu). Możliwość zmiany koloru pojedynczego fotonu może być ważnym krokiem na drodze do stworzenia hybrydowych kwantowych systemów obliczeniowych i komunikacyjnych.
      W przetwarzaniu kwantowej informacji bardzo ważna jest możliwość jej transportu w formie zakodowanej w fotonie oraz przechowywania. Specjaliści dążą do tego, by pojedyncze urządzenie było w stanie przechowywać i kodować kwantową informację. Problem jednak w tym, że dostępne obecnie systemy pamięci kwantowych są w stanie przechowywać fotony ze światła bliskiego światłu widzialnemu, a tymczasem najlepsze wyniki daje transport fotonów z podczerwieni, gdyż takie fale doświadczają najmniejszych strat w światłowodach.
      To pokazuje, jak ważny jest wynalazek NIST. Pozwala on bowiem na skonstruowanie pojedynczego urządzenia, które będzie pracowało z różnymi fotonami.
      Specjaliści z NIST dokonali tego łącząc źródło fotonu z wykrywaczem zdolnym do zmiany częstotliwości z niższej (długa fala) na wyższą (krótka fala).
      Ważnym osiągnięciem jest wykorzystanie tutaj kropki kwantowej, gdyż pozwala ona na emisję pojedynczego fotonu o określonej długości fali (kolorze). Wcześniej naukowcy nie potrafili uzyskać aż tak dużej kontroli nad fotonami. Dodatkową zaletą tej technologii jest konwersja fotonu z podczerwieni do światła niemal widzialnego. Pozwala to bowiem aż 25-krotnie zwiększyć wykrywalność fotonów, gdyż obecnie dostępne detektory dla światła bliskiego widzialnemu są znacznie doskonalsze niż te dla podczerwieni.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...