Sign in to follow this
Followers
0
Polietylen mocnejszy od kewlaru
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Polietylen, jedno z najbardziej rozpowszechnionych tworzyw sztucznych, rzadko jest wykorzystywany do produkcji ubrań, gdyż nie przepuszcza, ani nie absorbuje wody. Wkrótce może się to zmienić, gdyż amerykańscy eksperci opracowali nowy materiał pochodzący z polietylenu. Nie tylko „oddycha” on lepiej niż bawełna, nylon czy poliester, ale ma też mniejszy ślad ekologiczny, gdyż łatwiej go wytwarzać, barwić, czyścić i używać.
Przemysł tekstylny produkuje rocznie około 62 miliony ton tekstyliów. Zużywane są przy tym olbrzymie ilości wody, generowane miliony ton odpadów, a przemysł ten jest jednym z głównych emitentów gazów cieplarnianych, odpowiadając z 5–10% światowej emisji. Recykling używanych ubrań z tworzyw naturalnych wymaga dużych ilości wody i energii, a tekstylia, które są barwione lub złożone z różnych rodzajów materiałów są w ogóle trudne do ponownego przerobienia i użycia.
Zespół Swietłany Boriskiny z Massachusetts Institute of Technology rozpoczął pracę od stopnienia sproszkowanego polietylenu o niskiej gęstości, a następnie wyciągnął z niego włókna o średnicy 18,5 mikrometrów.
W procesie tym powierzchnia materiału ulega lekkiemu utlenieniu, przez co staje się on hydrofilowy bez konieczności osobnej obróbki chemicznej. Następnie tworzono nici, z których każda składała się z ponad 200 włókien. W procesie tym pomiędzy poszczególnymi włóknami pozostają wolne przestrzenie, którymi może przemieszczać się woda, dzięki czemu materiał wykonany z takich nici może odprowadzać wodę. Gdy badacze zmierzyli, jak szybko woda wędruje wzdłuż nici, okazało się, że jest ona odprowadzana szybciej niż przez bawełnę, nylon i poliester.
Okazało się jednak, nowy materiał nie tylko ma obiecujące właściwości odnośnie odprowadzania wody. Badania wykazały, że nowy materiał można barwić na sucho. W procesie tym cząsteczki barwnika zostają uwięzione w materiale jeszcze zanim zostanie on stopiony. Dzięki temu unika się tradycyjnych metod barwienia, kiedy to tekstylia są zanurzane w środkach chemicznych. Co więcej, taki zabarwiony materiał byłby prawdopodobnie znacznie łatwiejszy w recyklingu, gdyż wystarczyłoby go roztopić i odwirować z niego barwnik.
Badacze z MIT informują też, że polietylen ma niższą temperaturę topnienia niż inne tworzywa wykorzystywane do produkcji tekstyliów, zatem proces produkcyjny wymaga zużycia mniejszej ilości energii. Ponadto podczas syntezy polietylenu uwalnia się mniej gazów cieplarnianych i ciepła odpadowego, niż podczas produkcji poliestru czy uprawy bawełny. Szczególnie wymagająca jest tutaj bawełna, której uprawa wymaga sporych areałów, zużycia dużej ilości nawozów i wody.
Dodatkową zaletą materiałów z polietylenu może być też fakt, że materiał ten łatwiej jest też czyścić i suszyć niż inne tworzywa. Nie brudzi się, bo nic się do niego nie przyczepia. Możesz wyprać polietylen w 10 minut w zimnej wodzie. W przypadku bawełny ten sam efekt uzyskuje się po godzinie prania w ciepłej wodzie, mówi Boriskina.
Uczeni pracują teraz nad zastosowaniem włókien polietylenowych w strojach dla sportowców oraz w mundurach. Polietylen może przydać się też w kombinezonach kosmicznych, gdyż chroni przed szkodliwym promieniowaniem UV.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na Northwestern University powstało włókno, które jest bardziej wytrzymałe niż kewlar. Horacio Espinosa i jego zespół stworzyli nowe włókno łącząc węglowe nanorurki i polimer. Testy w skali nano i makro wykazały, że jest ono niezwykle wytrzymałe i odporne na uszkodzenia.
Wielkim osiągnięciem jest fakt, że włókno to jest jednocześnie plastyczne i wytrzymałe. Może zaabsorbować i rozproszyć olbrzymie ilości energii zanim ulegnie uszkodzeniu. Nigdy wcześniej nie obserwowaliśmy takiej wytrzymałości. Włókno może znaleźć zastosowanie w przemyśle obronnym, lotniczym i kosmicznym - mówi profesor Espinosa.
Badania jego zespołu to część programu Multidisciplinary University Research Initiative (MURI) prowadzonego przez Departament Obrony. W jego ramach zespół Espinosy otrzymał 7,5 miliona dolarów na badania nad włóknami i materiałami kompozytowymi do produkcji kamizelek kuloodpornych, spadochronów, pojazdów, samolotów i satelitów.
Naukowcy rozpoczęli swoje prace od węglowych nanorurek. Same nanorurki są jednym z najbardziej wytrzymałych materiałów, jednak gdy się je łączy, tracą swoje właściwości, gdyż ześlizgują się po sobie. Naukowcy dodali więc polimer, który łączył nanorurki i z tak uzyskanego materiału wyprodukowali przędzę. Następnie wykorzystali skanningowy mikroskop elektronowy do zbadania jej właściwości, podczas gdy sama przędza była poddawana najróżniejszym oddziaływaniom zewnętrznym.
Poznaliśmy funkcjonowanie tego materiału w różnej skali. Chcemy zrozumieć, jak działają poszczególne molekuły, by w przyszłości stworzyć jeszcze bardziej wytrzymałe włókna - mówi Tobin Filleter z zespołu Espinosy.
Już teraz wiadomo, że nowe włókno jest bardziej wytrzymałe niż kewlar - materiał powszechnie używany do produkcji kamizelek kuloodpornych i hełmów.
Uczeni przyznają jednocześnie, że materiał może być znacznie wytrzymalszy. Węglowe nanorurki, czyli budulec naszej przędzy, są 50 razy bardziej wytrzymałe, niż przędza którą stworzyliśmy. Jeśli będziemy w stanie poprawić łączenia, wyprodukujemy wytrzymalszy materiał - mówi Mohammad Naraghi.
Jednym ze sposobów na wzmocnienie przędzy może być wykorzystanie emisji elektronowej o wysokiej energii do kowalencyjnego połączenia ze sobą nanorurek pomiędzy poszczególnymi włóknami.
-
By KopalniaWiedzy.pl
Większość polimerów to dobre izolatory zarówno dla energii elektrycznej, jak i cieplnej. Naukowcom z MIT-u (Massachusetts Institute of Technology) udało się tak zmienić polietylen - najpopularniejszy z polimerów - że zaczął przewodzić ciepło lepiej niż wiele metali. Pozostał przy tym izolatorem dla elektryczności.
Bardzo ciekawą właściwością nowego polietylenu jest fakt, iż przewodzi on ciepło tylko w jednym kierunku. Dzięki temu możne znaleźć zastosowanie tam, gdzie potrzebne jest efektywne odprowadzanie energii cieplnej, czyli np. w urządzeniach chłodzących podzespoły komputerowe.
Kluczem do sukcesu było ułożenie molekuł polimeru w jednej linii. Zwykle tworzą one chaotyczną splątaną warstwę. Dokonano tego dzięki powolnemu wyciąganiu włókna polietylenowego z roztworu za pomocą końcówki mikroskopu sił atomowych. Posłużyła on jednocześnie do sprawdzenia właściwości włókna.
Badania wykazały, że tak produkowane włókno przewodzi ciepło aż 300-krotnie lepiej od zwykłego polietylenu. Przewyższa pod tym względem połowę metali, w tym żelazo czy platynę. Profesor Gang Chen, szef zespołu badawczego zapewnia, że po udoskonaleniu techniki uda się uzyskać jeszcze lepsze właściwości.
Nowy polimer przyda się wszędzie tam, gdzie potrzebujemy dobrego jednokierunkowego przewodnictwa cieplnego. Jeśli dodamy do tego, że polietylen niewiele waży, jest dobrym izolatorem elektrycznym oraz wykazuje stabilne właściwości chemiczne, to pole jego zastosowań znacznie się zwiększy.
Wszystko zależy oczywiście od tego, czy uda się opracować tanie techniki masowej produkcji nowego materiału.
-
By KopalniaWiedzy.pl
Miłośnicy gier komputerowych wiedzą, że gdy ich bohater, ubrany w kamizelkę kuloodporną, otrzymuje postrzał, zmniejszają się wskaźniki wytrzymałości kamizelki. W końcu, gdy dotrą one do zera, kamizelka już nie chroni bohatera.
John Wray, naukowiec z U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), wraz z kolegami pracują nad podobnym wskaźnikiem wytrzymałości pancerza czołgów i pojazdów.
Ich pomysł polega na pokryciu pancerzy połączonymi w pary czujnikami piezoelektrycznymi. Każda z płyt pancerza otrzymuje taką parę. Jeden z nich zamienia otrzymywaną energię elektryczną w mechaniczną i przesyła mechaniczne drgania do czujnika na drugim końcu płyty. Ten je odbiera i zamienia w energię elektryczną. System taki działa idealnie tylko na nieuszkodzonych płytach. W miarę jak kolejne uderzające pociski powodują coraz większe zniszczenia, dochodzi do strat sygnałów przesyłanych pomiędzy czujnikami. Mierząc te straty czujniki będą mogły sygnalizować, jak bardzo dana część pancerza została uszkodzona. Tę samą technikę można zastosować w przypadku kamizelek kuloodpornych.
Prace nad "inteligentnymi zbrojami" trwają od lat. dotychczas opracowano dwie metody oceny stanu uszkodzeń. Jedna wymaga zdjęcia pancerza i jego obejrzenia. Druga zakłada wykorzystanie ultradźwięków do sprawdzenia stanu opancerzenia pojazdu. Obie jednak mogą być zastosowane w bazie, a nie na polu bitwy. Dlatego też konieczne jest znalezienie metody oceniania stanu pancerza w czasie rzeczywistym. Odpowiedzią może być właśnie użycie opisanej technologii. Jej dodatkową zaletą jest możliwość zebrania informacji o uzbrojeniu przeciwnika. Kule różnego kalibru uderzają w pojazd opancerzony z różną siłą. Dzięki informacjom o uszkodzeniach i informacjom o tym, z jakiej broni dokonywany jest ostrzał, pojazd, który ma uszkodzony pancerz może np. odwrócić się nieuszkodzoną stroną w tym kierunku, z którego ostrzeliwany jest bronią większego kalibru, co może ocalić życie żołnierzy. Ponadto podczas uderzenia pocisku w pancerz wytwarza się energia, którą będzie można przechwycić i wykorzystać.
-
-
Recently Browsing 0 members
No registered users viewing this page.