Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

iPod może być niebezpieczny

Recommended Posts

Badania przeprowadzone przez 17-letniego licealistę wykazały, że iPod może zakłócać działanie rozruszników serca. Podczas eksperymentów przetestowano 83 starsze osoby z wszczepionymi rozrusznikami. Odtwarzacz MP3 został umieszczony w odległości 5 centymetrów od ich klatki piersiowej i pozostawał tam przez 5-10 sekund.

Okazało się, że w 29% przypadków doszło do interferencji pomiędzy oboma urządzeniami, a w 20% iPod zakłócił odczyt funkcji serca. W niektórych przypadkach do interferencji dochodziło nawet wówczas, gdy iPod został umieszczony w odległości 45 centymetrów. U jednego z pacjentów iPod spowodował zatrzymanie się rozrusznika.

Jay Thaker, wspomniany licealista, prowadził swoje badania pod nadzorem profesora Krita Jongnarangsina z Wydziału Medycyny Sercowo-Naczyniowej Uniwersytetu w Michigan.
Profesor Jongnarangsin mówi, że zatrzymanie rozrusznika u pacjenta, który nie ma własnego rytmu serca może spowodować poważne problemy.

Na szczęście niewiele osób z rozrusznikami używa iPodów. Problemem jest jednak fakt, że używa ich 100 milionów innych ludzi i osoba z rozrusznikiem może bardzo łatwo nieświadomie mieć kontakt z niebezpiecznym dla niej urządzeniem.

Konieczne są dalsze badania nad wpływem iPodów na rozruszniki oraz sprawdzenie, czy inne odtwarzacze muzyczne też mogą spowodować podobne problemy.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dwa białka - receptory glikokortykoidów (ang. glucocorticoid receptor, GR) i mineralokortykoidów (ang. mineralocorticoid receptor, MR) - wspierają się wzajemnie, by utrzymać serce w dobrym zdrowiu. Gdy sygnalizacja między nimi zostaje zaburzona, u myszy rozwija się choroba serca.
      Wyniki, które ukazały się w piśmie Science Signalling, mogą zostać wykorzystane do opracowania związków terapeutycznych dla osób z grupy podwyższonego ryzyka zawału.
      Stres zwiększa ryzyko zgonu z powodu niewydolności serca, bo nadnercza wytwarzają wtedy kortyzol. Kortyzol wywołuje reakcję walcz lub uciekaj i wiąże się z receptorami GR i MR w różnych tkankach ciała, by m.in. ograniczyć stan zapalny.
      Gdy poziom kortyzolu we krwi jest zbyt wysoki przez dłuższy czas, mogą się rozwinąć różne czynniki ryzyka chorób serca, w tym podwyższony poziom cholesterolu i cukru czy nadciśnienie.
      Dr Robert Oakley zidentyfikował źle działające GR w latach 90., gdy jako student pracował z dr. Johnem Cidlowskim na Uniwersytecie Karoliny Północnej w Chapel Hill. Krótko po tym odkryciu inni naukowcy stwierdzili, że ludzie z ponadprzeciętną liczbą zmienionych receptorów GR są bardziej narażeni na choroby serca. Opierając się na tych wynikach, Oakley i Cidlowski testowali szczep myszy pozbawionych sercowych GR. U zwierząt dochodziło do powiększenia serca, a przez to do jego niewydolności i zgonu. Kiedy naukowcy z NIEHS (National Institute of Environmental Health Sciences) wyhodowali szczep myszy bez sercowych MR, serca gryzoni działały normalnie.
      Oakley i Cidlowski zaczęli się więc zastanawiać, co się stanie, gdy w tkance serca brakować będzie obu receptorów. Naukowcy przypuszczali, że zwierzęta po podwójnym knock-oucie genowym będą miały podobne lub poważniejsze problemy z sercem jak myszy bez GR. Ku naszemu zaskoczeniu, serca były [jednak] oporne na chorobę - opowiada Oakley.
      Cidlowski podkreśla, że u myszy tych nie zaszły zmiany genowe, które doprowadziły do niewydolności serca u gryzoni pozbawionych GR, a jednocześnie zaszły korzystne zmiany w działaniu genów chroniących serce. Choć ich serca działały prawidłowo, w porównaniu do serc bez receptorów MR, były one nieco powiększone.
      Sugerujemy, że skoro GR i MR współpracują, lepszym podejściem [do leczenia ludzi z chorobami serca] będzie produkowanie leków działający nie na jeden, ale na dwa receptory naraz - podsumowuje Cidlowski.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od około 10 lat wiadomo, że możliwe jest włamanie się do rozrusznika serca czy pompy insulinowej i zaszkodzenie użytkownikowi tych urządzeń, a nawet jego zabicie. Teraz inżynierowie z Purdue University znacząco zwiększyli bezpieczeństwo takich urządzeń.
      Podłączamy coraz więcej urządzeń do ludzkiego organizmu, od inteligentnych zegarków po wyświetlacze do rzeczywistości wirtualnej. Wyzwaniem jest nie tylko zapewnienie komunikacji tak, by nikt nie mógł jej przechwycić, ale również uzyskanie większych przepustowości przy mniejszym zużyciu energii, wyjaśnia profesor Sheryas Sen.
      Płyny ustrojowe bardzo dobrze przenoszą sygnały elektryczne. Dotychczas te swoiste sieci lokalne organizmu (body area networks) wykorzystywały technologię Bluetooth to przesyłania sygnałów. Jednak jej użycie oznaczało, że sygnał można było przechwycić z odległości co najmniej 10 metrów.
      Zespół Sena opracował technologię, dzięki której sygnały wędrują po organizmie znacznie bardziej bezpiecznie, nie wychodząc na odległość większą niż centymetr poza powierzchnię skóry, a jednocześnie technologia ta zużywa 100-krotnie mniej energii niż Bluetooth.
      Nowa technologia wykorzystuje specjalne urządzenie, które sprzęga sygnały w zakres kwazistatyczny. To bardzo niski stan spektrum elektromagnetycznego. Grupa Sena już współpracuje z rządem i przemysłem w celu wykorzystanie swojego pomysłu w układach scalonych wielkości ziarna piasku.
      Prototypowy zegarek opracowany przez naukowców, wysyła sygnały po całym ciele. Grubość skóry czy włosów w żaden sposób nie wpływają na sprawność przesyłania danych, zapewnia Sen.
      Po raz pierwszy wykazaliśmy, jak można wykorzystać właściwości fizyczne organizmu do przesyłania sygnałów tak, by nikt nie mógł tych sygnałów podsłuchać, mówi profesor Sen.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Płody mogą wysłać organizmowi matki komórki macierzyste, które różnicując się w komórki serca, dokonują naprawy schorowanego narządu. Choć eksperymenty prowadzono na myszach, zespół Hiny Cahundry z Mount Sinai School of Medicine uważa, że właśnie w ten sposób można wytłumaczyć wysoki odsetek samoistnych wyleczeń u kobiet, które w okresie okołoporodowym zmagały się z kardiomiopatiami.
      W eksperymentach Amerykanów zwykłe samice spółkowały z samcami, u których we wszystkich tkankach ciała wytwarzało się białko wzmocnionej zielonej fluorescencji (ang. ang. enhanced green fluorescent protein, EGFP). Dzięki temu łatwo było prześledzić obecność komórek pochodzących od dziecka w organizmie matki.
      Ekipa zauważyła, że multipotencjalne komórki macierzyste płodu wszczepiały się wybiórczo w uszkodzonych strefach matczynego serca (komórki multipotencjalne to komórki poszczególnych listków zarodkowych: ektodermy, endodermy czy mezodermy; mówi się, że są ukierunkowane tkankowo, czyli mogą się przekształcać wyłącznie w komórki narządów powstających z danego listka). Różnicowały się one w rozmaite linie komórek serca - w warunkach in vivo w komórki nabłonka, komórki mięśni gładkich oraz kardiomiocyty. W warunkach in vitro płodowe komórki wyizolowane z serca matki powtarzały te same szlaki różnicowania, tworząc dodatkowo naczynia krwionośne i bijące kardiomiocyty. Akademicy mogli to wszystko sprawdzić, ponieważ u ciężarnych samic wywoływano zawał, a po 2 tygodniach zabijano, by przeprowadzić sekcję.
      Wydaje się zatem, że komórki macierzyste płodu mogą trafiać do krwiobiegu matki. Ponieważ utrzymują się potem przez dziesięciolecia w tkankach, mamy do czynienia z mikrochimerami. Podobne działania leżą w interesie płodów, ponieważ poprawiając stan zdrowia matki, zwiększają własne szanse na przeżycie.
    • By KopalniaWiedzy.pl
      U niektórych pacjentów z implantami kardiologicznymi (sztucznymi zastawkami, rozrusznikami itp.) rozwija się groźne niekiedy dla życia zakażenie krwi, ponieważ bakterie w ich organizmie mają zmutowany gen, ułatwiający im tworzenie biofilmu na urządzeniu.
      Zespół z Uniwersytetu Stanowego Ohio i Centrum Medycznego Duke University, który pracował pod przewodnictwem m.in. prof. Stevena Lowera, zauważył, że pewne szczepy gronkowca złocistego (Staphylococcus aureus) dysponują kilkoma wariantami białek powierzchniowych, ułatwiającymi tworzenie biofilmów. Ponieważ biofilmy są antybiotykooporne, jedynym wyjściem było do tej pory chirurgiczne usunięcie implantu i zastąpienie go nowym.
      Chcąc ograniczyć liczbę zakażeń i kosztowność wdrażanych procedur, Amerykanie przeprowadzili eksperymenty z wykorzystaniem mikroskopu sił atomowych i symulacji komputerowych. Sprawdzali, w jaki sposób bakterie przylegają do urządzeń, by utworzyć biofilm. Gdy proces zostanie uruchomiony, białka powierzchniowe bakterii łączą się z pokrywającym implant białkami surowicy ludzkiej krwi. Skoro jednak gronkowce znajdują się w nosie niemal połowy Amerykanów, czemu nie każdy pacjent przechodzi zakażenie? Czemu niektóre szczepy powodują infekcję, a niektóre pozostają uśpione? Naukowcy odkryli, że białka powierzchniowe gronkowców z 3 polimorfizmami pojedynczego nukleotydu (ang. single nucleotide polymorphism, SNP) wiązały się z białkami surowicy mocniej niż u pacjentów z gronkowcami z innymi wariantami proteiny.
      Wielu specjalistów pracuje nad materiałami, które nie dopuszczą do związania bakterii, do problemu można jednak podejść od innej strony - od strony samych bakterii.
      Prof. Vance Fowler z Duke University dysponuje biblioteką izolatów S. aureus. Naukowcy mają nadzieję, że dzięki niej uda się lepiej poznać oddziaływania między powierzchniami nieożywionymi a żywymi mikroorganizmami na poziomie molekularnym. W ramach najnowszego studium międzyuczelniany zespół badał 80 izolatów z 3 źródeł: 1) od pacjentów z zakażeniem krwi i potwierdzonym zakażeniem implantu kardiologicznego, 2) od pacjentów z zakażeniem krwi i niezakażonym urządzeniem oraz 3) z nosa zdrowych osób zamieszkujących ten sam obszar. Dr Nadia Casillas-Ituarte doprowadzała do związania pojedynczego gronkowca z fibronektyną pokrywającą powierzchnię skanującej sondy mikroskopu AFM (bakterie wykorzystują do tego adhezynę - białko wiążące fibronektynę A). Później próbowała je rozdzielić i zmierzyć siłę każdego połączenia.
      Jak dokładnie przebiegał eksperyment? Akademicy symulowali bicie ludzkiego serca, pozwalając, by na krótki moment doszło do związania. Później dźwigienkę podrywano, przeprowadzając taki zabieg co najmniej 100-krotnie na każdej komórce. Określano też działanie okolicznych komórek. W ten sposób powstał wykres dla ok. 250 tys. z nich. Pierwszym krokiem jest ustalenie, jak bakterie czują powierzchnię. Można zahamować ten proces, jeśli najpierw się go zrozumie - podkreśla Casillas-Ituarte.
      W kolejnym etapie badań naukowcy zsekwencjonowali aminokwasy wchodzące w skład białka wiążącego fibronektynę A ze wszystkich wykorzystanych izolatów. W ten właśnie sposób zidentyfikowali SNP charakterystyczne dla próbek pobranych od pacjentów z zakażeniami implantów kariologicznych. Symulacje komputerowe pokazały tworzenie się wiązań między białkami bakteryjnymi i ludzkimi. Przy standardowych sekwencjach białek cząsteczki trzymały się na dystans. Kiedy jednak zmieniono sekwencję 3 aminokwasów w bakteryjnym białku powierzchniowym, między białkami gronkowca i człowieka tworzyło się wiązanie wodorowe.
      Zmieniliśmy aminokwasy w taki sposób, by przypominały SNP zidentyfikowane u gronkowców od pacjentów z zakażeniami implantów. Wydaje się zatem, że SNP mają związek z tym, czy wiązanie się wytworzy, czy nie - tłumaczy Lower.
      Białko wiążące fibronektynę A jest jednym z ok. 10 białek powierzchniowych S. aureus, które tworzą wiązania z białkami komórki gospodarza. W przyszłości trzeba się więc będzie skupić na pozostałych. Nie można też wykluczyć, że istnieją warianty fibronektyny, które przyczyniają się do opisanego problemu.
    • By KopalniaWiedzy.pl
      Po raz pierwszy wykazano, że otyłość bezpośrednio wywołuje elektryczne anomalie w pracy serca.
      Kardiolog i doktorant Hany Abed z Uniwersytetu w Adelajdzie podkreśla, że naukowcy dysponują coraz większą liczbą dowodów, że otyłość zmienia budowę, rozmiary serca, sposób, w jaki się ono kurczy, a także funkcję elektryczną mięśnia. Skutkiem tego ostatniego jest najczęstsze zaburzenie rytmu serca – migotanie przedsionków. Abed prowadzi badania, które mają ujawnić, jak otyłość wpływa na serce i czy spadek wagi może obniżyć ryzyko rozwoju migotania przedsionków.
      Wiemy już, że otyłość prowadzi do wzrostu ciśnienia i obciążenia serca. Najnowsze badania laboratoryjne na modelu owczym pokazują także, że otyłość wywołuje elektryczne nieprawidłowości w przedsionkach serca.
      Kardiolog z uniwersyteckiego Centrum Zaburzeń Rytmu Serca ujawnia, że w Australii częściej hospitalizuje się pacjentów z powodu migotania przedsionków niż niewydolności serca. Problem polega na tym, że migotanie przedsionków jest zazwyczaj wychwytywane przypadkowo: podczas kontroli lekarskiej lub gdy pojawiają się zawroty głowy, palpitacje serca czy bóle w klatce piersiowej. Niestety, często pierwszym objawem zaburzenia rytmu serca bywa dopiero udar.
      Abed ujawnia, że specjaliści z sektora medycznego szacują, że do 2020 r. aż 2/3 przypadków migotania przedsionków będzie można przypisać samej tylko otyłości. Naukowiec z antypodów wyjaśnia, że osoby najbardziej zagrożone migotaniem przedsionków – seniorzy – stają się coraz grubsze, przez co ryzyko rozwoju choroby serca jest u nich coraz wyższe.
×
×
  • Create New...