Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Połączyli grafen z azotkiem boru i kontrolują światło

Rekomendowane odpowiedzi

Naukowcy z MIT-u połączyli właściwości dwóch dwuwymiarowych materiałów, co pozwoliło im na niezwykle precyzyjne kontrolowanie fali światła. Ich prace mogą znaleźć zastosowanie w nowych systemach wykrywania za pomocą światła, zarządzania energią oraz w urządzeniach do obrazowania o wysokiej rozdzielności.

Amerykańscy uczeni wykorzystali dwuwymiarową warstwę grafenu umieszczoną na dwuwymiarowej warstwie heksagonalnego azotku boru (hBN). Prace były prowadzone przez profesora Nicholasa Fanga i jego studenta Anshumana Kumara we współpracy ze specjalistami z IBM-a, politechniki w Hongkongu oraz University of Minnesota.

Oba wspomniane materiały są podobne, gdyż atomy tworzą w nich heksagonalne wzory, oba są strukturami o grubości jednego atomu. Jednak oba w inny sposób oddziałują na światło. Okazało się jednak, że oddziaływania te się uzupełniają, pozwalając na kontrolowanie światła.

Gdy do warstwy grafenu w takim hybrydowym materiale przyłożymy odpowiednie napięcie, światło jest blokowane. Jednak po przyłożeniu innego napięcia ma miejsce szczególny rodzaj rozprzestrzeniania się światła zwany hiperbolicznością. Wcześniej tego zjawiska nie udawało się uzyskać w systemach optycznych. A jedną z jego konsekwencji jest silna interakcja pomiędzy cienkim materiałem a światłem, co daje wysoki stopień kontroli nad światłem. To pozwala na wysyłanie i odbieranie sygnałów świetlnych na bardzo ograniczonej przestrzeni i może prowadzić do opracowania unikatowych materiałów optycznych służących do optycznej komunikacji - mówi profesor Fang.

Gdy światło wchodzi w interakcję z grafenem pojawiają się plazmowy, podczas interakcji z hBN mamy do czynienia z fononami. Gdy oba materiały odpowiednio połączymy plazmony i fonony tworzą pary i silnie ze sobą rezonują. Grafen umożliwia precyzyjne kontrolowanie światła, a hBN pozwala na umieszczenie go na bardzo małej przestrzeni i kierowanie nim. Wskutek połączenia tych dwóch materiałów powstaje unikatowy system, który pozwala na manipulowanie procesami optycznymi - wyjaśnia Phaedon Avouris z IBM-a. Dzięki temu systemowi można np. zdecydować, jakiej długości fale i w jakich kierunkach mogą się rozprzestrzeniać. Możemy selektywnie wybierać częstotliwości i je przepuszczać, a inne blokować - mówi Kumar.

Profesor Fang uważa, że dzięki nowemu materiałowi możliwe będzie stworzenie falowodów o średnicy zaledwie 20 nanometrów. A to z kolei pozwoli na połączenie w jednym układzie scalonym komponentów optycznych i elektronicznych. Obecnie komponenty takie są umieszczane oddzielnie i trzeba jeszcze zapewnić łączność pomiędzy nimi.

Fang mówi też, że bardzo ciekawą właściwością nowego materiału jest możliwość przełączania światła na jego powierzchni. Dzieje się tak, gdyż materiał w sposób naturalny pracuje przy długości fali w zakresie bliskiej podczerwieni. To z kolei pozwoli na udoskonalenie spektrometrów podczerwonych i – potencjalnie – umożliwi obrazowanie pojedynczych molekuł.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tutaj bez dubli:

 

Naukowcy z MIT-u połączyli właściwości dwóch dwuwymiarowych materiałów, co pozwoliło im na niezwykle precyzyjne kontrolowanie fali światła. Ich prace mogą znaleźć zastosowanie w nowych systemach wykrywania za pomocą światła, zarządzania energią oraz w urządzeniach do obrazowania o wysokiej rozdzielności.

Amerykańscy uczeni wykorzystali dwuwymiarową warstwę grafenu umieszczoną na dwuwymiarowej warstwie heksagonalnego azotku boru (hBN). Prace były prowadzone przez profesora Nicholasa Fanga i jego studenta Anshumana Kumara we współpracy ze specjalistami z IBM-a, politechniki w Hongkongu oraz University of Minnesota.

Oba wspomniane materiały są podobne, gdyż atomy tworzą w nich heksagonalne wzory, oba są strukturami o grubości jednego atomu. Jednak oba w inny sposób oddziałują na światło. Okazało się jednak, że oddziaływania te się uzupełniają, pozwalając na kontrolowanie światła.

Gdy do warstwy grafenu w takim hybrydowym materiale przyłożymy odpowiednie napięcie, światło jest blokowane. Jednak po przyłożeniu innego napięcia ma miejsce szczególny rodzaj rozprzestrzeniania się światła zwany hiperbolicznością. Wcześniej tego zjawiska nie udawało się uzyskać w systemach optycznych. A jedną z jego konsekwencji jest silna interakcja pomiędzy cienkim materiałem a światłem, co daje wysoki stopień kontroli nad światłem. To pozwala na wysyłanie i odbieranie sygnałów świetlnych na bardzo ograniczonej przestrzeni i może prowadzić do opracowania unikatowych materiałów optycznych służących do optycznej komunikacji - mówi profesor Fang.

Gdy światło wchodzi w interakcję z grafenem pojawiają się plazmony, podczas interakcji z hBN mamy do czynienia z fononami. Gdy oba materiały odpowiednio połączymy plazmony i fonony tworzą pary i silnie ze sobą rezonują. Grafen umożliwia precyzyjne kontrolowanie światła, a hBN pozwala na umieszczenie go na bardzo małej przestrzeni i kierowanie nim. Wskutek połączenia tych dwóch materiałów powstaje unikatowy system, który pozwala na manipulowanie procesami optycznymi - wyjaśnia Phaedon Avouris z IBM-a. Dzięki temu systemowi można np. zdecydować, jakiej długości fale i w jakich kierunkach mogą się rozprzestrzeniać. Możemy selektywnie wybierać częstotliwości i je przepuszczać, a inne blokować - mówi Kumar.

Profesor Fang uważa, że dzięki nowemu materiałowi możliwe będzie stworzenie falowodów o średnicy zaledwie 20 nanometrów. A to z kolei pozwoli na połączenie w jednym układzie scalonym komponentów optycznych i elektronicznych. Obecnie komponenty takie są umieszczane oddzielnie i trzeba jeszcze zapewnić łączność pomiędzy nimi.

Fang mówi też, że bardzo ciekawą właściwością nowego materiału jest możliwość przełączania światła na jego powierzchni. Dzieje się tak, gdyż materiał w sposób naturalny pracuje przy długości fali w zakresie bliskiej podczerwieni. To z kolei pozwoli na udoskonalenie spektrometrów podczerwonych i – potencjalnie – umożliwi obrazowanie pojedynczych molekuł.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...