Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W Japonii powstały najmniejsze na świecie urządzenie tnące. Molekularnej wielkości nożyczki są sterowane za pomocą światła. Badacze zapowiadają, że będą przydadzą się one przy "operacjach” na genach, białkach i innych cząstkach.

Długość nożyczek wynosi zaledwie 3 nanometry, czyli 3 milionowe części milimetra. Są więc 100-krotnie mniejsze niż długość fali światła ultrafioletowego. Co ciekawe, nożyczki, podobnie jak ich większy odpowiednik, składają się z trzpienia, rączki i ostrzy.

Nanometrowe nożyczki stworzono z grup fenylowych, a więc składają się z węgla i wodoru.
Rolę trzpienia odgrywa molekuła ferrocenu (C5H5FeC5H5). Ma ona budowę podobną do kanapki: atom żelaza znajduje się pomiędzy dwoma równoległymi pierścieniami C5H5. Pierścienie te swobodnie się obracają wokół atomu żelaza.

Rola rączki nożyczek przypadła grupie fenylenowej, którą naukowcy połączyli z azobenzenem (C6H6-N=N-C6H6), molekułą, która reaguje na światło. Azobenzen, po oświetleniu światłem widzialnym, rozszerza się, pociąga za sobą rączkę i nożyczki się zamykają. W reakcji na światło ultrafioletowe kurczy się, otwierając ostrza nożyczek.

To pierwsze zastosowanie, w którym jedne molekuły w sposób mechaniczny sterują innymi w odpowiedzi na impulsy świetlne – mówi Takuzo Aida, szef zespołu badawczego. To ważny krok na drodze do stworzenia molekularnych robotów – dodaje.

Obecnie naukowcy pracują nad większą wersją swoich nożyczek, które, pracując w bliskiej podczerwieni, umożliwiałby przeprowadzanie zdalnych operacji wewnątrz ludzkiego ciała.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Ustalono, w jaki dokładnie sposób promieniowanie ultrafioletowe wpływa na mechaniczną integralność warstwy rogowej naskórka.
      Przemysł kosmetyczny to wielomiliardowy biznes. Specjaliści ciągle wypróbowują nowe dodatki do filtrów słonecznych, które mają pozwolić lepiej chronić skórę. Dotąd [...] nikt [jednak] należycie nie sprawdzał, jak UV wpływa ma mechaniczną integralność skóry - podkreśla prof. Guy K. German z Uniwersytetu w Binghamton.
      Wydłużona ekspozycja na słońce powoduje fotouszkodzenia, które odpowiadają m.in. za wczesne pojawienie się zmarszczek. Choć ultrafiolet (UV) jest uznawany za najbardziej uszkadzający, naukowcy nie rozstrzygnęli, który z jego zakresów jest pod tym względem najgorszy.
      Autorzy raportu z Journal of the Mechanical Behavior of Biomedical Materials zajęli się oceną biomechanicznych zjawisk związanych z fotostarzeniem. Badali wpływ różnych zakresów promieniowania UV na warstwę rogową naskórka (łac. stratum corneum, SC).
      Amerykanie posłużyli się próbkami skóry z kobiecych piersi; wybrano właśnie ten rejon, bo rzadko ma on kontakt ze słońcem. SC wystawiano na oddziaływanie promieniowania ultrafioletowego o różnych długościach fali: UVA (365 nm), UVB (302 nm) lub UVC (265 nm). Dawka UV wynosiła do 4000 J/cm2.
      German i doktorant Zachary W. Lipsky zauważyli, że wpływając na białka korneodesmosomów, które pomagają komórkom przylegać do siebie (chodzi o desmogleinę 1), UV osłabia adhezję w warstwie rogowej naskórka. To z tego powodu oparzenia słoneczne prowadzą do łuszczenia się skóry. Generalnie pochłanianie UV rośnie z przestrzennym rozproszeniem desmogleiny 1 z połączeń międzykomórkowych korneocytów.
      Bazując na tych początkowych odkryciach, Lipsky i German badają wpływ promieniowania UV na głębsze warstwy skóry. Panowie przekonują, że ochrona skóry jest ważna bez względu na porę roku. Próbujemy uświadomić wszystkim, że filtry słoneczne nie tylko chronią przed nowotworami skóry, ale i pomagają zachować integralność skóry, zabezpieczając m.in. przed infekcjami. SC to najbardziej zewnętrzna warstwa naskórka, dlatego musimy ją chronić przed bakteriami i innymi mikroorganizmami, które próbują się dostać do naszych organizmów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Cornell University bezpiecznie pokonali barierę krew-mózg, co pomoże dostarczyć do mózgu leki na choroby neurodegeneracyjne czy nowotwory.
      Uczeni odkryli, że produkowana przez organizm adenozyna umożliwia przeniknięcie dużym molekułom przez barierę. Zauważyli, że gdy w komórkach tworzących barierę krew-mózg aktywuje się adenozynę, zostaje otwarta „brama" pozwalająca na przenikanie molekuł.
      Co prawda pierwsze badania wykonano na myszach, lecz receptory adenozyny odkryto również w komórkach ludzkich. Ponadto naukowcy z Cornell zauważyli, że już zaakceptowany przez FDA bazujący na adenozynie lek o nazwie Lexiscan, który jest wykorzystywany podczas badań obrazowych serca u ciężko chorych pacjentów, może na krótko otwierać barierę krew-mózg.
      Bariera krew-mózg składa się z wyspecjalizowanych komórek w naczyniach krwionośnych mózgu, które wybiórczo pozwalają niezbędnym molekułom, takim jak aminokwasy, tlen, glukoza czy woda na przenikanie do mózgu. Bariera działa tak dobrze, że dotychczas nie wiedziano, jak można dostarczyć do mózgu lekarstwa.
      Największym problemem w każdej chorobie neurologicznej jest niemożność jej leczenia, ponieważ nie możemy dostarczyć lekarstw - stwierdziła profesor immunologii Margaret Bynoe. Wielkie firmy farmaceutyczne od 100 lat próbują przekroczyć tę barierę bez szkody dla pacjenta - dodała uczona.
      Dotychczas próbowano przełamać barierę tak modyfikując lekarstwa, by ich molekuły przyczepiały się do tych molekuł, które mogą wnikać do mózgu. Taka taktyka nie sprawdziła się, gdyż zmodyfikowane lekarstwa nie działały. Wygląda na to, że użycie receptorów adenozyny jest sposobem na otwarcie wejścia. Skorzystamy z tego, by otwierać i zamykać barierę gdy będzie to potrzebne - stwierdziła Bynoe.
      Podczas testów na myszach do mózgu zwierząt udało się dostarczyć duże molekuły dekstranów oraz przeciwciała beta amyloidu i zaobserwowano, jak wiążą one płytki amyloidowe odpowiedzialne za powstawanie choroby Alzheimera. Podobne testy są prowadzone w kierunku leczenia stwardnienia rozsianego.
    • przez KopalniaWiedzy.pl
      Przechowywanie energii słonecznej w postaci chemicznej ma tę przewagę nad przechowywaniem jej w elektrycznych akumulatorach, że energię taką można zachować na długi czas. Niestety, taki sposób ma też i wady - związki chemiczne przydatne do przechowywania energii ulegają degradacji po zaledwie kilku cyklach ładowania/rozładowywania. Te, które nie degradują, zawierają ruten - rzadki i drogi pierwiastek. W 1996 roku udało się znaleźć molekułę - fulwalen dirutenu - która pod wpływem światła słonecznego przełącza się w jeden stan i umożliwia kontrolowane przełączanie do stanu pierwotnego połączone z uwalnianiem energii.
      W ubiegłym roku profesor Jeffrey Grossman wraz ze swoim zespołem z MIT-u odkryli szczegóły działania fulwalenu dirutenu, co dawało nadzieję na znalezienie zastępnika dla tej drogiej molekuły.
      Teraz doktor Alexie Kolpak we współpracy z Grossmanem znaleźli odpowiednią strukturę. Połączyli oni węglowe nanorurki z azobenzenem. W efekcie uzyskali molekułę, której właściwości nie są obecne w obu jej związkach składowych.
      Jest ona nie tylko tańsza od fulwalenu dirutenu, ale charakteryzuje się również około 10 000 razy większą gęstością energetyczną. Jej zdolność do przechowywania energii jest porównywalna z możliwościami baterii litowo-jonowych.
      Doktor Kolpak mówi, że proces wytwarzania nowych molekuł pozwala kontrolować zachodzące interakcje, zwiększać ich gęstość energetyczną, wydłużać czas przechowywania energi i - co najważniejsze - wszystkie te elementy można kontrolować niezależnie od siebie.
      Grossman zauważa, że olbrzymią zaletą termochemicznej metody przechowywania energii jest fakt, że to samo medium wyłapuje energię i ją przechowuje. Cały mechanizm jest zatem prosty, tani, wydajny i wytrzymały. Ma on też wady. W takiej prostej formie nadaje się tylko do przechowywania energii cieplnej. Jeśli potrzebujemy energii elektrycznej, musimy ją wytworzyć z tego ciepła.
      Profesor Grossman zauważa też, że koncepcja, na podstawie której stworzono funkcjonalne nanorurki z azobenzenem jest ogólnym pomysłem, który może zostać wykorzystany także w przypadku innych materiałów.
      Podstawowe cechy, jakimi musi charakteryzować się materiał używany do termochemicznego przechowywania energii to możliwość przełączania się w stabilne stany pod wpływem ciepła oraz istnienie odkrytego przez Grossmana w ubiegłym roku etapu przejściowego, rodzaju bariery energetycznej pomiędzy oboma stabilnymi stanami. Bariera musi być też odpowiednia do potrzeb. Jeśli będzie zbyt słaba, molekuła może samodzielnie przełączać się pomiędzy stanami, uwalniając energię wtedy, gdy nie będzie ona potrzebna. Zbyt mocna bariera spowoduje zaś, że pozyskanie energii na żądanie będzie trudne.
      Zespół Grossmana i Kolpak szuka teraz kolejnych materiałów, z których można będzie tworzyć molekuły służące do termochemicznego przechowywania energii.
    • przez KopalniaWiedzy.pl
      Testy wykazały, że arktyczne renifery reagują na bodźce świetlne z zakresu ultrafioletu. Biolodzy uważają, że ta niezwykła umiejętność pozwala im znajdować pokarm i unikać drapieżników w specyficznej atmosferze Arktyki, gdzie promieniowania UV nie brakuje, a  widoczność często bywa bardzo ograniczona (Journal of Experimental Biology).
      Naukowcom po raz pierwszy przeszło przez myśl, że renifery mogą widzieć ultrafiolet, kiedy ustalono, że promienie UV przechodzą przez soczewkę i rogówkę zwierzęcia. Podczas eksperymentów przepuszczano światło przez próbki tkanek. Okazało się, że oko renifera radzi sobie ze światłem o minimalnej długości fali ok. 350 nanometrów. Wyposażeni w tę wiedzę brytyjscy akademicy postanowili sprawdzić, czy u znieczulonego renifera wystąpi reakcja elektryczna siatkówki na promienie UV (gdyby wystąpiła, oznaczłoby to, że ssak widzi ultrafiolet).
      Posłużyliśmy się ERG (elektroretinografią), dzięki której umieszczając na wewnętrznej stronie powieki niewielki kawałek złotej folii, utrwaliliśmy elektryczną reakcję siatkówki na światło - wyjaśnia prof. Glen Jeffery z Uniwersyteckiego College'u Londyńskiego. W ten sposób udowodniono, że czopki, światłoczułe receptory siatkówki oka, rzeczywiście reagują na UV.
      Renifery żywią się porostami. Ponieważ organizmy te pochłaniają ultrafiolet, pasącym się zwierzętom mogą się one wydawać czarne. Dzięki tej samej umiejętności wilki, których futra także absorbują promienie UV, jawią się na tle śniegu jako ciemniejsze. Biolodzy podkreślają, że na tym nie koniec korzyści, bo w ramach widzenia UV i mocz staje się bardziej widoczny, co pozwala stwierdzić, że w pobliżu znajduje się inny renifer lub drapieżnik. Wszystko wskazuje na to, że widząc ultrafiolet, renifery nie doświadczają żadnego uszerbku na zdrowiu, nie cierpią np. na typową dla ludzi ślepotę śnieżną (jest to oparzenie siatkówki w okolicach plamki żółtej, wywołane promieniami światła widzialnego oraz światłem ultrafioletowym).
      W niedalekiej przyszłości ten sam zespół chce przeprowadzić testy na fokach. Prof. Jeffery sądzi bowiem, że wiele arktycznych zwierząt widzi ultrafiolet. W końcu nie ma dowodów na to, że niedźwiedzie polarne muszą się zmagać ze skutkami ślepoty śnieżnej...
    • przez KopalniaWiedzy.pl
      Powstał pierwszy molekularny silnik, którego efekty pracy można wykorzystać w praktyce. Dotychczas tego typu urządzenia były jedynie ciekawostkami, gdyż nie istniało żadne połączenie pomiędzy nimi a światem zewnętrznym.
      Tymczasem Martin McCullagh, Ignacio Franco, Mark A. Ratner i George C. Schatz z Northwestern University wykorzystali molekułę DNA do zamiany światła w pracę mechaniczną. Wyniki swoich badań opublikowali w Journal of the American Chemical Society.
      Wspomniana molekuła to fragment DNA o strukturze spinki do włosów, w skład której wchodzą dwie pary zasad guanina-cytozyna połączone azobenzenem. Końcówka jednej pary zasad jest przytwierdzona do podłoża, a końcówka drugiej - do dźwigni mikroskopu sił atomowych. To właśnie mikroskop służy za interfejs łączący molekularny silnik ze światem zewnętrznym.
      Urządzenie działa dzięki temu, że azobenzen pod wpływem światła przechodzi izomeryzację, zmieniając się pomiędzy izomerami trans i cis. Jest ona związana ze zmianą kształtu azobenzenu, co prowadzi do poruszania się całego silnika. Proces jest odwracalny, można więc przeprowadzać go wielokrotnie.
      Naukowcy wiedzą, w jaki sposób uzyskać pracę netto z całego systemu. Najpierw molekułę znajdującą się w trybie cis rozciągają za pomocą końcówki mikroskopu sił atomowych, następnie światło zmienia izomer cis w bardziej sztywny izomer trans. Teraz izomer trans jest ściskany do oryginalnej wielkości silnika, po czym drugie źródło światła zmienia strukturę w izomer cis. Jako, że molekuła jest bardziej sztywna podczas jej ściskania niż rozciągania, uzyskujemy pracę netto. Energia włożona w rozciągnięcie jest bowiem mniejsza, niż energia uzyskana ze ściśnięcia.
      Całość działa dzięki indukowanym światłem zmianom w molekule z DNA i azobenzenu. Ze względu na konstrukcję, integralną częścią silnika jest mikroskop sił atomowych. Praca musi być wykonana na molekule i dźwigni podczas rozciągania, a energia jest pozyskiwana w czasie ściskania. Jeśli molekuła jest sztywniejsza w czasie ściskania, uzyskujemy energię netto - mówi Schatz.
      Naukowcy oszacowali pozyskaną energię na maksymalnie 3,4 kcal/mol przy maksymalnej wydajności 2,4%. Można to porównać z 7,3 kcal/mol pozyskiwanej z hydrolizy ATP, która jest głównym źródłem energii dla procesów biologicznych.
      Pozyskaliśmy obiecującą ilość energii, ale prawdziwym celem tych badań jest poszukiwanie nowych sposobów na jej konwersję. Zaproponowany przez nas silnik to punkt wyjścia do dalszych usprawnień. Pozwoli nam on ocenić możliwości maszyn zbudowanych z pojedynczej molekuły. To z kolei jest bardzo ważnym krokiem w kierunku zmiany takich maszyn z naukowej ciekawostki w źródło energii dla procesów odbywających się w nanoskali - dodaje Schatz.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...