Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  

Recommended Posts

Powstał pierwszy molekularny silnik, którego efekty pracy można wykorzystać w praktyce. Dotychczas tego typu urządzenia były jedynie ciekawostkami, gdyż nie istniało żadne połączenie pomiędzy nimi a światem zewnętrznym.

Tymczasem Martin McCullagh, Ignacio Franco, Mark A. Ratner i George C. Schatz z Northwestern University wykorzystali molekułę DNA do zamiany światła w pracę mechaniczną. Wyniki swoich badań opublikowali w Journal of the American Chemical Society.

Wspomniana molekuła to fragment DNA o strukturze spinki do włosów, w skład której wchodzą dwie pary zasad guanina-cytozyna połączone azobenzenem. Końcówka jednej pary zasad jest przytwierdzona do podłoża, a końcówka drugiej - do dźwigni mikroskopu sił atomowych. To właśnie mikroskop służy za interfejs łączący molekularny silnik ze światem zewnętrznym.

Urządzenie działa dzięki temu, że azobenzen pod wpływem światła przechodzi izomeryzację, zmieniając się pomiędzy izomerami trans i cis. Jest ona związana ze zmianą kształtu azobenzenu, co prowadzi do poruszania się całego silnika. Proces jest odwracalny, można więc przeprowadzać go wielokrotnie.

Naukowcy wiedzą, w jaki sposób uzyskać pracę netto z całego systemu. Najpierw molekułę znajdującą się w trybie cis rozciągają za pomocą końcówki mikroskopu sił atomowych, następnie światło zmienia izomer cis w bardziej sztywny izomer trans. Teraz izomer trans jest ściskany do oryginalnej wielkości silnika, po czym drugie źródło światła zmienia strukturę w izomer cis. Jako, że molekuła jest bardziej sztywna podczas jej ściskania niż rozciągania, uzyskujemy pracę netto. Energia włożona w rozciągnięcie jest bowiem mniejsza, niż energia uzyskana ze ściśnięcia.

Całość działa dzięki indukowanym światłem zmianom w molekule z DNA i azobenzenu. Ze względu na konstrukcję, integralną częścią silnika jest mikroskop sił atomowych. Praca musi być wykonana na molekule i dźwigni podczas rozciągania, a energia jest pozyskiwana w czasie ściskania. Jeśli molekuła jest sztywniejsza w czasie ściskania, uzyskujemy energię netto - mówi Schatz.

Naukowcy oszacowali pozyskaną energię na maksymalnie 3,4 kcal/mol przy maksymalnej wydajności 2,4%. Można to porównać z 7,3 kcal/mol pozyskiwanej z hydrolizy ATP, która jest głównym źródłem energii dla procesów biologicznych.

Pozyskaliśmy obiecującą ilość energii, ale prawdziwym celem tych badań jest poszukiwanie nowych sposobów na jej konwersję. Zaproponowany przez nas silnik to punkt wyjścia do dalszych usprawnień. Pozwoli nam on ocenić możliwości maszyn zbudowanych z pojedynczej molekuły. To z kolei jest bardzo ważnym krokiem w kierunku zmiany takich maszyn z naukowej ciekawostki w źródło energii dla procesów odbywających się w nanoskali - dodaje Schatz.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii sąd federalny nakazał udostępnienie policji całej bazy danych DNA, w tym profili, których właściciele nie wyrazili zgody na udostępnienie.
      Od czasu, gdy w ubiegłym roku policja – po przeszukaniu publicznej bazy danych DNA – schwytała seryjnego mordercę sprzed dziesięcioleci, udało się dzięki takim bazom rozwiązać wiele nierozstrzygniętych spraw. Jednak działania policji budzą zastrzeżenia dotyczące prywatności. We wrześniu Departament Sprawiedliwości, by rozwiać te obawy, wydał instrukcję, zgodnie z którą policja może przeszukiwać tego typu bazy danych wyłącznie w sprawach o przestępstwa związane z użyciem przemocy oraz tam, gdzie właściciel profilu wyraził zgodę.  Już zresztą wcześniej, bo w maju witryna GEDmatch, na którą każdy może wgrać swój profil DNA, ograniczyła policji dostęp do tych profili, których właściciele wyrazili zgodę. Tym samym liczba profili DNA do których policja ma dostęp na GDAmatch spadła z 1,3 miliona do zaledwie 185 000.
      Pewien policyjny detektyw z Florydy prowadzi śledztwo w sprawie seryjnego gwałciciela. Uznał, że dostęp jedynie do 185 000 profili z GEDmatch to zbyt mało i wystąpił do sądu z wnioskiem, by ten, nakazał witrynie udostępnienie mu całej bazy. Detektyw ma nadzieję, że jacyś krewni gwałciciela wgrali tam informacje o swoim DNA, dzięki którym uda się znaleźć sprawcę. Sędzia przychylił się do prośby detektywa. Wyrok taki od razu wzbudził kontrowersje.
      Prawnicy mówią, że to, czy właściciele profili mają powody do zmartwień zależy od prowadzenia każdej ze spraw i trudno jest na tym etapie wyrokować, jak rozstrzygnięcie sądu ma się do amerykańskiego prawa. Zwracają jednak uwagę, że GEDmatch to niewielka firma. Mimo to posiadana przez nią baza 1,3 miliona profili oznacza, że w bazie tej znajduje się profil kuzyna trzeciego stopnia lub kogoś bliżej spokrewnionego z 60% białych Amerykanów.
      Firmy takie jak 23andMe czy Ancestry posiadają znacznie bardziej rozbudowane bazy, a zatem pozwalają na sprofilowanie znacznie większej liczby obywateli USA. Zresztą 23andMe już zapowiedziała, że jeśli otrzyma podobny wyrok to będzie się od niego odwoływała. Prawnicy zauważają, że z jednej strony, jeśli w przyszłości pojawi się takie odwołanie i rozpocznie się batalia sądowa, którą będzie rozstrzygał jeden z Federalnych Sądów Apelacyjnych lub Sąd Najwyższy, to ustanowiony zostanie silny precedens. Z drugiej strony osoba, która zostałaby oskarżona dzięki przeszukaniu takiej bazy mogłaby zapewne powoływać się na Czwartą Poprawkę, która zakazuje nielegalnych przeszukań.
      Specjaliści mówią, że jeśli podobne wnioski zaczną pojawiać się coraz częściej i sądy będą się do nich przychylały, to będzie to poważny problem dla witryn z bazami danych DNA.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych.
      Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici.
      Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę.
      Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności.
      Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań.
      Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu.
      Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng.
      Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA jest o krok bliżej wysłania astronautów na Księżyc. W Stennis Space Center zakończono właśnie ważny test silników Space Launch System. Po czterech latach pracy wszystkie 16 byłych głównych silników promów kosmicznych uzyskało niezbędne zgody do wykorzystania ich w misjach SLS. Te 16 silników pozwoli na przeprowadzenie czterech pierwszych misji.
      Ponadto NASA podpisała z firmą Aerojet Rocketdyne kontrakt na budowę kolejnych silników RS-25 dla SLS. Ponadto seria testów prowadzonych przez ostatnich 51 miesięcy dowiodła, że silniki RS-25 mogą pracować z większą niż dotychczas mocą, wymaganą przy SLS.
      Silniki mają obecnie zezwolenie na wykorzystanie w misji załogowej na Księżyc, która będzie misją przygotowawczą do wyprawy na Marsa, mówi Johnny Heflin, wicedyrektor SLS Liquid Engines Office w Marshall Space Flight Center. Jesteśmy więc w stanie zapewnić moc niezbędną do podróży na Księżyc i dalej.
      Testy RS-25 rozpoczęły się 9 stycznia 2015 roku, kiedy to na 500 sekund uruchomiono wersję rozwojową silnika, oznaczoną kodem 0525. Pierwszą pełną wersję silników dla SLS przetestowano 10 marca 2016 roku. W sumie przeprowadzono 32 testy wersji rozwojowych i pełnych, w czasie których silniki pracowały w sumie przez ponad 4 godziny.
      Warto przypomnieć, że silniki RS-25 są najlepiej sprawdzonymi silnikami rakietowymi na świecie. Wzięły one udział w 135 misjach promów kosmicznych. Gdy program promów został zakończony w 2011 roku NASA dysponowała dodatkowymi 16 silnikami, które zmodyfikowano na potrzeby SLS. Początkowo silniki te wyprodukowano z myślą o dostarczeniu pewnego określonego poziomu mocy, określonego jako 100%. Jeszcze przed zakończeniem programu promów kosmicznych silniki udoskonalono tak, by dostarczały 104,5% mocy. Jednak na potrzeby SLS musiały one zostać ponownie rozbudowane.
      W tym celu NASA musiała opracować nowy kontroler silnika, który monitoruje jego pracę i służy jako interfejs pomiędzy silnikiem a rakietą. Pierwsze testy nowego kontrolera odbyły się w marcu 2017 roku. Wczoraj przetestowano 17. kontroler, zapewniając 16 silnikom RS-25 odpowiedni zapas.
      Po opracowaniu nowego kontrolera NASA musiała udowodnić, że silniki mogą osiągnąć wymaganą moc 111%. Gdy się to udało, konieczne było dalsze wzmocnienie silników tak, by miały one zapas mocy. W lutym 2018 roku silniki uruchomiono na 50 sekund z mocą 113%. Czas ten stopniowo wydłużano podczas kolejnych testów. W końcu w lutym bieżącego roku RS-25 były w stanie pracować z mocą 113% przez 510 sekund.
      Wczoraj przeprowadzono zaś ostateczne testy silnika RS-25 oznaczonego numerem 2062. To właśnie ten silnik zostanie wykorzystany w Exploration Mission-2, w czasie której astronauci polecą w kapsule Orion na orbitę Księżyca.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół z Mayo Clinic nauczył układ immunologiczny myszy zwalczania czerniaka złośliwego. Do spokrewnionego z wirusem wścieklizny wirusa pęcherzykowatego zapalenia jamy ustnej wprowadzono DNA pobrane z ludzkich komórek czerniaka. Dzięki temu szereg genów można było wprowadzić bezpośrednio do guza. Na wczesnym etapie badań w mniej niż 3 miesiące z minimalnymi skutkami ubocznymi wyleczono 60% gryzoni.
      Sądzimy, że ta technika pozwoli nam zidentyfikować całkowicie nowy zestaw genów, które kodują antygeny ważne dla stymulowania układu odpornościowego, tak aby odrzucił on nowotwór. [...] Zauważyliśmy, że by odrzucenie guza było najskuteczniejsze, u myszy kilka białek musi ulegać jednoczesnej ekspresji - tłumaczy dr Richard Vile.
      Wierzę, że uda nam się stworzyć eksperymentalne szczepionki, dzięki którym po kolei wyeliminujemy wszystkie nowotwory. Szczepiąc przeciwko wielu białkom naraz, mamy nadzieję leczyć guzy pierwotne i chronić przed wznową.
      Szczepionki powstające w ramach nurtu immunoterapii nowotworowej bazują na spostrzeżeniu, że guzy przystosowują się do powtarzalnych ataków układu odpornościowego, zmniejszając liczbę antygenów na powierzchni komórek. Przez to układowi odpornościowemu trudniej jest je rozpoznać. O ile jednak nowotwory mogą się nauczyć ukrywać przed zwykłym układem odpornościowym, o tyle nie są w stanie uciec przed układem immunologicznym wytrenowanym przez zmodyfikowany genetycznie wirus pęcherzykowatego zapalenia jamy ustnej.
      Nikt nie wie, ile antygenów układ odpornościowy widzi na powierzchni komórek nowotworowych. Doprowadzając do ekspresji wszystkich białek w wysoce immunogennych wirusach, zwiększamy ich widoczność dla systemu odpornościowego - wyjaśnia dr Vile.
    • By KopalniaWiedzy.pl
      Ötzi, znaleziony przed 20 laty zmumifikowany „Człowiek Lodu“, którego zwłoki liczą sobie ponad 5000 lat, miał brązowe oczy. Naukowcy badający jego DNA stwierdzili również, że jego organizm nie tolerował laktozy, był podatny na choroby serca i chorował na boreliozę. Niewykluczone też, że był spokrewniony z niektórymi współczesnymi mieszkańcami północnych wybrzeży Morza Śródziemnego.
      Wykryta u Ötzi borelioza to najstarszy znany przypadek tej choroby. Badania DNA wskazujące na podatność na choroby serca potwierdziły, że prawidłowo wcześniej zidentyfikowano zwapnienie arterii. To z kolei oznacza, iż występowania chorób serca nie można przypisywać wyłącznie współczesnemu trybowi życia.
      Jeden z genów wskazuje, że przodkowie Ötzi przybyli do Europy z terenów Bliskiego Wschodu. Gen ten jest obecnie rzadko znajdowany w Europie, jednak można go znaleźć u Włochów, a przede wszystkim u mieszkańców Sardynii i Korsyki.
×
×
  • Create New...