Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Wyjątkowy układ scalony
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
HP ma zamiar stworzyć do 2017 roku 256-rdzeniowy procesor Corona, którego rdzenie będą komunikowały się ze sobą za pomocą łączy optycznych. Taka kość miałaby wykonywać 10 biliardów operacji zmiennoprzecinkowych na sekundę, zatem wydajność pięciu układów dorównywałaby wydajności współczesnych superkomputerów. Poszczególne rdzenie wymieniałyby dane z prędkością 20 terabitów na sekundę, a komunikacja między procesorem a pamięcią odbywałaby się z prędkością 10 Tb/s. Co więcej Corona zużywałaby znacznie mniej energii niż współczesne układy, dzięki czemu superkomputerom łatwiej będzie pokonać barierę eksaflopsa (1018 operacji zmiennoprzecinkowych na sekundę).
Obecnie istnieją dwa główne problemy, które znacznie utrudniają zwiększanie wydajności układów scalonych w dotychczasowym tempie. Im więcej rdzeni w procesorze, tym trudniej jest koordynować ich pracę i komunikować je ze sobą. Bardzo trudno jest uzyskać układ posiadający więcej niż 16 rdzeni, który pracowałby jak procesor równoległy. Drugi poważny problem to olbrzymi pobór mocy, który ma miejsce podczas przesyłania danych od i do układów pamięci.
Obie te przeszkody można rozwiązać za pomocą zintegrowanej fotoniki, czyli laserów i łączy optycznych wbudowanych w układ scalony. Przykładem takiej kości może być zaprezentowany właśnie przez IBM-a Holey Optochip. Nad podobnymi rozwiązaniami pracują też Intel (projekt Runnemede), Nvidia (Echelon), Sandia National Laboratory (X-calibur) czy MIT (Angstrom).
Najważniejszą jednak rolę odgrywa zintegrowana fotonika w projekcie Corona. Problem w tym, że część potrzebnej technologii wciąż jeszcze nie została opracowana. Jednak co się powoli zmienia. Od dłuższego już czasu informujemy o postępach na tym polu. Przez ostatnie lata wiele firm pracowało nad poszczególnymi podzespołami, teraz zaczęto łączyć je w układy. To jak przejście od tranzystora do układu scalonego - stwierdził Marco Fiorentino z HP Labs.
HP ma zamiar w każdy rdzeń Corony wbudować laser, który będzie wysyłał informacje do wszystkich innych rdzeni. Jak obliczają specjaliści wykorzystanie elektroniki do stworzenia 10-terabitowego kanału przesyłu danych pomiędzy CPU a pamięcią wymagałoby 160 watów mocy. Zdaniem HP, jeśli zastąpimy elektronikę zintegrowaną fotoniką, pobór mocy spadnie do 6,4 wata.
Zmniejszenie poboru mocy to dla superkomputerów niezwykle istotna sprawa. Najpotężniejsza maszyna na świecie, japoński K Computer, potrzebuje obecnie do pracy 12,6 MW. Jego wydajność wynosi 10,5 PFlops, trzeba by ją zatem zwiększyć niemal 100-krotnie by osiągnąć barierę eksaflopsa.
Zintegrowana fotonika przyczyni się również do obniżenia poboru mocy przez serwery i urządzenia telekomunikacyjne, co odgrywa olbrzymią rolę w internecie, którym przesyłamy coraz większą ilość danych. Z czasem lasery i łącza optyczne mogą trafić też do urządzeń przenośnych, pozwalający na ich dłuższą pracę bez potrzeby ładowania baterii. Również, co niezwykle istotne, w fotonice nie występuje problem interferencji elektromagnetycznej, zatem jej stosowanie np. w samochodach czy samolotach będzie bezpieczniejsze niż stosowanie urządzeń elektronicznych.
Problemem jest też stworzenie miniaturowych laserów, które można będzie budować za pomocą dostępnych technologii. Jako, że z krzemu nie można generować światła, specjaliści badają inne materiały, przede wszystkim arsenek galu i fosforek indu. Ostatnio MIT zainteresował się też germanem.
Trwają również intensywne prace nad rozwojem technologii TSV (through silicon vias). Pozwoli się ona pozbyć szyn, za pomocą których łączą się ze sobą poszczególne układy. Szyny stanowią dla danych wąskie gardło i zużywają sporo energii. TSV pozwala układać na sobie układy scalone (powstają w ten sposób układy 3D) i łączyć je kablami poprowadzonymi wewnątrz takiego stosu układów, co zwiększa przepustowość, a jednocześnie zmniejsza zużycie prądu i pozwala na zaoszczędzenie miejsca na płycie głównej.
W projekcie Corona HP chce połączyć obie technologie - 3D i zintegrowaną fotonikę. Dzięki temu ma powstać 256-rdzeniowy procesor zbudowany z 64-rdzeniowych klastrów. Całość zostanie wykonana w procesie 16 nanometrów i będzie połączona łączami optycznymi.
-
przez KopalniaWiedzy.pl
IBM pokaże dzisiaj prototypowy optyczny układ scalony „Holey Optochip“. To pierwszy równoległy optyczny nadajnik-odbiornik pracujący z prędkością terabita na sekundę. Urządzenie działa zatem ośmiokrotnie szybciej niż inne tego typu kości. Układ pozwala na tak szybki transfer danych, że mógłby obsłużyć jednocześnie 100 000 typowych użytkowników internetu. Za jego pomocą można by w ciągu około godziny przesłać zawartość Biblioteki Kongresu USA, największej biblioteki świata.
Holey Optochip powstał dzięki wywierceniu 48 otworów w standardowym układzie CMOS. Dało to dostęp do 24 optycznych nadajników i 24 optycznych odbiorników. Przy tworzeniu kości zwrócono też uwagę na pobór mocy. Jest on jednym z najbardziej energooszczędnych układów pod względem ilości energii potrzebnej do przesłania jednego bita informacji. Holey Optochip potrzebuje do pracy zaledwie 5 watów.
Cały układ mierzy zaledwie 5,2x5,8 mm. Odbiornikami sygnału są fotodiody, a nadajnikami standardowe lasery półprzewodnikowe VCSEL pracujące emitujące światło o długości fali 850 nm.
-
przez KopalniaWiedzy.pl
Hewlett-Packard jest twórcą pierwszej na rynku stacji roboczej typu all-in-one. W 27-calowym wyświetlaczu zamknięto całą maszynę, w tym serwerowy procesor, kartę graficzną i zasilacz. Jin Zafarana, dyrektor HP ds. stacji roboczych powiedział, że klienci chcieli mieć więcej miejsca na biurkach, stąd pomysł na stację robocza all-in-one.
Zdaniem Zafarany Z1 można porównać do Z800, najbardziej wydajnej stacji roboczej HP. „Dostarczamy moc stacji roboczej, ale bez obudowy typu tower“ - mówi Zafarana.
W Z1 zastosowano procesor Xeon, kartę graficzną Nvidia Quadro oraz 400-watowy zasilacz. Urządzenie wyposażono w kamerę i porty USB 3.0. Jest tam też miejsce na dwa dyski twarde i czytnik Blu-ray. Użytkownik łatwo może zdemontować wyświetlacz i wymieniać poszczególne elementy.
-
przez KopalniaWiedzy.pl
Ze złożonych w sądzie dokumentów dowiadujemy się, że HP zapłacił Intelowi 690 milionów dolarów, by półprzewodnikowy koncern utrzymał produkcję i rozwój procesorów Itanium do roku 2017. Najpierw na podstawie umowy z 2008 roku HP zapłacił 440 milionów za przedłużenie życia Itanium do roku 2014. W 2010 roku obowiązywanie umowy przedłużono do 2017, a HP dopłacił 250 milionów USD.
Producenci oprogramowania, tacy jak Microsoft czy Red Hat, zaprzestali rozwijania aplikacji dla architektury Itanium, gdyż wiedzą, że jej czas dobiega końca. Wielcy producenci sprzętu, jak Dell czy IBM już od lat nie oferują serwerów z Itanium. Nawet sam Intel przestał w ubiegłym roku wspierać Itanium w kompilatorach C/C++ i Fortrana. Co więcej, część swojego zespołu pracującego nad Itanium Intel skierował już do prac nad projektami związanymi z układami Xeon.
HP potrzebuje utrzymania Itanium, gdyż jego najważniejsze produkty - HP-UX, OpenVMS czy NonStop - korzystają właśnie z niej i miną całe lata, zanim uda się stworzyć ich odpowiedniki dla Xeona. Koncern jednak musi się spieszyć. Sprzedaż platformy Itanium spada od wielu lat, a sztuczne utrzymywanie Itanium nie tylko kosztuje go setki milionów dolarów, które musi płacić Intelowi, ale naraża na szwank jego relacje z innymi firmami. O wysokości opłat wnoszonych na rzecz Intela dowiedzieliśmy się bowiem przy okazji sporu sądowego pomiędzy HP a Oracle’em. HP twierdzi, że Oracle złamał umowę zaprzestając produkcji oprogramowania dla Itanium, a zrobił to, by promować własne serwery z architekturą Sun SPARC. Oracle zaś twierdzi, że HP postępowało niewłaściwie, nie informując klientów o przyszłości Itanium. Przed trzema dniami sąd orzekł, że obie firmy postępowały niewłaściwie. HP, gdyż nie informował swoich partnerów, klientów i pracowników o planach dotyczących Itanium, a Oracle, gdyż wykorzystało fałszywy pretekst do zaprzestania produkcji programów dla Itanium w celu promowania platformy SPARC.
-
przez KopalniaWiedzy.pl
Inżynierowie z Brown University zaprojektowali urządzenie, które pozwala mierzyć poziom glukozy w ślinie, a nie krwi. W artykule opublikowanym na łamach Nano Letter Amerykanie ujawnili, że w biochipie wykorzystano interferometry plazmoniczne.
Zaprezentowane rozwiązanie powstało "na styku" dwóch dziedzin: nanotechnologii i plazmoniki, czyli nauki o własnościach i zastosowaniach powierzchniowych fal plazmonowo-polarytonowych. Na biochipie wielkości paznokcia specjaliści z Brown University wytrawili tysiące interferometrów plazmonicznych. Potem mierzyli stężenie glukozy w roztworze przepływającym po urządzeniu. Okazało się, że odpowiednio zaprojektowany biochip wykrywa stężenia glukozy występujące w ludzkiej ślinie. Zazwyczaj poziom cukru w ślinie jest ok. 100-krotnie niższy niż we krwi.
W ten sposób zweryfikowaliśmy koncepcję, że [bazujące na interakcjach elektronów i fotonów] interferometry plazmoniczne można wykorzystać do wykrywania niewielkich stężeń cząsteczek - podkreśla prof. Domenico Pacifici, dodając, że równie dobrze jak glukoza, mogą to być inne substancje, np. zanieczyszczenia środowiskowe czy wąglik. W dodatku da się je wykrywać wszystkie naraz na tym samym chipie.
Konstruując czujnik, naukowcy zrobili nacięcie o szerokości ok. 100 nanometrów. Potem z obu jego stron wycięli rowki o grubości 200 nanometrów. Wycięcie wychwytuje zbliżające się fotony, a rowki je rozpraszają, przez co dochodzi do interakcji z wolnymi elektronami, odbijającymi się od metalowej powierzchni chipa. Interakcje wolne elektrony-fotony prowadzą do powstania plazmonów powierzchniowych - tworzy się fala o długości mniejszej od fotonu w wolnej przestrzeni (free space). Dwie fale przemieszczają się wzdłuż powierzchni chipa, aż napotkają fotony w nacięciu. Zachodzi interferencja, a obecność mierzonej substancji (tutaj glukozy) na czujniku prowadzi do zmiany względnej różnicy faz, co z kolei powoduje mierzone w czasie rzeczywistym zmiany w intensywności światła transmitowanego przez środkowe wycięcie. Środkowe nacięcie działa jak mikser [...] dla fal plazmonów powierzchniowych i światła.
Akademicy nauczyli się, że mogą manipulować przesunięciem fazy, zmieniając odległości między wycięciem a rowkami po bokach. W ten sposób można wykalibrować interferometr wykrywający bardzo niskie stężenia glukozy rzędu 0,36 mg na decylitr.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.