Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Zagłada Filarów Stworzenia
dodany przez
KopalniaWiedzy.pl, w Ciekawostki
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Grupa astronomów z University of Texas at Austin doszła do wniosku, że wybudowany na Księżycu teleskop – pomysł, który NASA zarzuciła dekadę temu – może rozwiązać problemy, z którymi inne teleskopy sobie nie poradzą. Księżycowy teleskop mógłby bowiem dostrzec pierwsze gwiazdy, które powstały we wszechświecie. Zespół, na którego czele stoi Anna Schauer pracująca przy Teleskopie Hubble'a, opublikuje wyniki swoich badań w The Astrophysical Journal.
Historia astronomii to coraz potężniejsze teleskopy, które pozwalają nam dostrzec obiekty coraz bliżej Wielkiego Wybuchu, mówi profesor Volker Bromm, astrofizyk-teoretyk, który od dziesięcioleci bada pierwsze gwiazdy. Teleskop Kosmiczny Jamesa Webba (JWST) pozwoli nam zobaczyć pierwsze galaktyki. Jednak teorie mówią, że zanim powstały pierwsze galaktyki istniały gwiazdy III populacji. Ich dostrzeżenie jest nawet poza zasięgiem JWST. Do ich badań potrzebujemy jeszcze potężniejszego urządzenia.
Pierwsze gwiazdy powstały około 13 miliardów lat temu. Narodziły się z połączenia wodoru oraz helu i prawdopodobnie były nawet 100-krotnie większe od Słońca. Nowe obliczenia wykonane przez Schauer pokazują, że teleskop, którego projekt NASA porzuciła przed dekadą, mógłby badać te gwiazdy. W roku 2008 zespół Rogera Angela z University of Arizona zaproponował zbudowanie na Księżycu urządzenia o nazwie Lunar Liquid-Mirror Telescope (LLMT). NASA przeprowadziła analizy dotyczące zasadności budowy takiego teleskopu i zrezygnowała z projektu. Jak zauważa Niv Drory z McDonald Obserwatory, wówczas jednak nie istniała nauka dotycząca najwcześniejszych gwiazd. Obecnie wiele wskazuje na to, że taki teleskop mógłby je badać.
Potencjalne księżycowe laboratorium, nazwane przez Shauer „Ultimately Large Telescope”, miałoby średnicę 100 metrów. Teleskop działałby autonomicznie, byłby zasilany przez zbudowaną obok elektrownię fotowoltaiczną i przesyłałby dane do satelity na orbicie Księzyca.
Lustro takiego teleskopu nie byłoby wykonane ze szkła, ale z płynu, który jest lżejszy, zatem jego transport na Księżyc byłby tańszy. Teleskop byłby obracającą się kadzią wypełnioną płynem, na powierzchni którego znajdowałby się metaliczny płyn. Mogłaby to być np. rtęć. Kadź bez przerwy by się obracała, by nadać powierzchni płynu odpowiedni paraboliczny kształt, dzięki czemu działałaby ona jak lustro paraboliczne. Autorzy najnowszego studium mówią, że teleskop taki mógłby powstać w kraterze na północnym lub południowym biegunie księżyca.
Żyjemy w świecie pełnym gwiazd. Kluczowym pytaniem jest więc to o utworzenie się pierwszych gwiazd. Ich powstanie było bowiem kluczowym elementem w historii wszechświata, kiedy to pierwotne warunki panujące po Wielkim Wybuchu prowadziły do coraz bardziej złożonej budowy kosmosu, a z czasem umożliwiły powstanie planet, życia oraz istot inteligentnych. Moment powstania pierwszych gwiazd jest poza możliwościami obserwacyjnymi obecnych lub planowanych już teleskopów. Dlatego też musimy pomyśleć o urządzeniu, które pozwoli nam na obserwacje pierwszych gwiazd u zarania dziejów, mówi Bromm.
Warto w tym miejscu przypomnieć, że niedawno pisaliśmy iż NASA chce wiedzieć, czy roboty mogą wybudować na Księżycu gigantyczny radioteleskop.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Odkryta właśnie supernowa jest co najmniej dwukrotnie jaśniejsza i energetyczna oraz prawdopodobnie znacznie bardziej masywna niż dotychczasowa rekordzistka. Została ona zauważona przez międzynarodowy zespół naukowy, na którego czele stali naukowcy z University of Birmingham.
Grupa, w skład której wchodzą również uczeni z uniwersytetów Harvarda, Ohio i Norhtwestern, uważa, że SN2016aps może być przykładem niezwykle rzadkiej klasy pulsacyjnych supernowych z niestabilnością kreacji par. Być może powstała w wyniku połączenia dwóch gwiazd tuż przed eksplozją. Dotychczas takie wydarzenie przewidywano jedynie teoretycznie.
Możemy badać supernowe wykorzystując dwie skale – całkowitą energię ich eksplozji albo energię emitowaną w formie światła widzialnego, mówi główny autor badań doktor Matt Nicholl z University of Birmingham.
W typowej supernowej energia emitowana w postaci światła widzialnego to mniej niż 1% całkowitej emisji. Jednak w przypadku SN2016aps zaobserwowaliśmy, że energia ta była 5-krotnie większa niż dla typowej supernowej. To największa ilość światła, jakie udało się zaobserwować z supernowej, stwierdza uczony.
Analiza spektrum światła wykazała, że eksplozja została zasilona zderzeniem pomiędzy supernową a masywną powłoką gazową odrzuconą przez gwiazdę lata wcześniej. Każdej nocy obserwuje się wiele supernowych, większość z nich znajduje się w masywnych galaktykach. Ta supernowa się wyróżniała. Wydawało się, że znajduje się w środku pustki. Nie byliśmy w stanie dostrzec jej galaktyki, póki światło z supernowej nie przygasło, mówi doktor Peter Blanchard z Northwestern University.
Zespół obserwował gwiazdę przez dwa lata, do czasu aż jej jasność nie zmniejszyła się o 99%. Na podstawie tych obserwacji stwierdzono, że supernowa miała masę od 50 do 100 mas Słońca. Gwiazdy o tak wielkiej masie doświadczają gwałtownego pulsowania przed śmiercią. Zrzucają wtedy gigantyczną powłokę gazową. Zjawisko to może być napędzane przez proces zwany niestabilnością kreacji par, który został teoretycznie przewidziany 50 lat temu. Jeśli wszystko odpowiednio zgra się w czasie, supernowa może ponownie przechwycić powłokę gazową i uwolni olbrzymią ilość energii w wyniku tej kolizji. Myślimy, że zaobserwowaliśmy tutaj najlepszego kandydata na dowód prawdziwości takiego procesu. I prawdopodobnie najbardziej masywnego, stwierdza Nicholl.
Uczony dodaje, że SN2016aps dostarczyła dodatkowych pytań. Gwiazda zawierała głównie wodór. Jednak tak masywne gwiazdy powinny stracić wodór na długo, zanim zaczną pulsować. Dlatego też naukowcy przypuszczają, że doszło do połączenia dwóch mniej masywnych gwiazd, z których mniej masywna zawierała dużo wodoru, a ich wspólna masa była na tyle duża, że doszło do zjawiska niestabilności kreacji par.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie korzystający z Teleskopu Subaru odkryli około 1800 nieznanych dotychczas supernowych. Jest wśród nich 58 supernowych Ia, które znajdują się w odległości ponad 8 miliardów lat świetlnych od Ziemi.
Supernowe to gwiazdy, które eksplodowały pod koniec swojego życia. Eksplozja jest tak potężna, że często supernowa staje się równie jasna co cała jej galaktyka. Z czasem, w przeciągu kilku miesięcy, jej jasność się zmniejsza. Dla naukowców szczególnie interesujące są supernowe typu Ia, gdyż mają stałą jasność maksymalną, co pozwala na obliczenie jej odległości od Ziemi. To zaś umożliwia ocenę prędkości rozszerzania się wszechświata.
W ostatnich latach pojawiły się doniesienia o odkryciu nowego typu supernowych. Super Luminous Supernovae są od 5 do 10 razy jaśniejsze od supernowych Ia. Dzięki tak olbrzymiej jasności naukowcy mogą zauważyć gwiazdy położone tak daleko, że zwykle są one niewidoczne. Im zaś dalej w głąb jesteśmy w stanie zajrzeć, tym młodszy wszechświat widzimy, zatem tego typu badania pozwalają nam na określenie właściowości pierwszych gwiazd, które powstały po Wielkim Wybuchu.
Na świecie istnieje niewiele teleskopów zdolnych do wykonania ostrego obrazu odległych gwiazd. Opisywane powyżej odkrycie to dzieło profesora Naoki Yasuda z Kavli Institute for the Physics and Matematics of the Universe oraz pracujących pod jego kierunkiem uczonych z kilku japońskich uniwersytetów i Narodowego Obserwatorium Astronomicznego Japonii. Naukowcy wykorzystali Teleskop Subaru.
To urządzenie zdolne do generowania bardzo ostrych obrazów gwiazd jest też wyposażone w Hyper Suprime-Cam, 870-megapikselowy aparat fotograficzny obejmujący szeroką panoramę nieboskłonu. Japończycy przez sześć miesięcy wykonywali zdjęcia, a następnie poddali je szczegółowej analizie. Zwracali uwagę na gwiazdy, które nagle zwiększały swoją jasność, a następnie stopniowo przygasały. W ten sposób zidentyfikowali 5 supernowych typu Super Luminous oraz 400 supernowych Ia, w tym 58 położonych w odległości większej niż 8 miliardów lat świetlnych od Ziemi. O możliwościach Teleskopu Subaru niech świadczy fakt, że słynny Teleskop Hubble'a na znalezienie 50 supernowych położonych w odległości większej niż 8 miliardów lat świetlnych potrzebował około 10 lat.
Teleskop Subaru i Hyper Suprime-Cam już wcześniej pomogły stworzyć trójwymiarową mapę ciemnej materii i obserwowały pierwotne czarne dziury. Obecne badania dowodzą, że jest to również instrument zdolny do odszukiwania supernowych położonych bardzo daleko od Ziemi, mówi profesor Yasuda.
Teraz naukowcy chcą wykorzystać zdobyte dane do dokładniejszego obliczenia tempa rozszerzania się wszechświata oraz zbadania, jak ciemna energia zmienia się w czasie.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzięki temu, że chodzimy na dwóch nogach mogliśmy opanować ogień, zbudować katedry i stworzyć komputery. Autorzy śmiałej koncepcji uważają, że człowiek zaczął chodzić w pozycji wyprostowanej dzięki... eksplozjom supernowych.
Naukowcy z University of Kansas opublikowali na łamach Journal of Geology artykuł, w którym uzasadniają swoją hipotezę. Twierdzą oni, że przed około 8 milionami lat do Ziemi zaczęło docierać wyjątkowo dużo promieniowania z eksplodujących supernowych, a szczyt tego zjawiska miał miejsce 2,6 miliona lat temu. Bombardowanie atmosfery spowodowało, że w jej dolnych partiach pojawiła się olbrzymia ilość elektronów. Jonizacja atmosfery doprowadziła zaś do znacznego zwiększenia liczby wyładowań atmosferycznych, które wywołały pożary lasów na całej planecie. I to właśnie zniknięcie lasów miało skłonić naszych przodków żyjących w północno-wschodniej Afryce do przyjęcia pozycji wyprostowanej.
Sądzi się, że już wcześniej istniała wśród homininów pewna tendencja do poruszania się na tylnych kończynach, mówi główny autor hipotezy, profesor fizyki i astronomii Adrian Melott. Jednak byli oni zaadaptowani głównie do chodzenia po drzewach. Gdy jednak lasy zostały zastąpione przez sawanny, hominini musieli pokonywać coraz większe odległości pomiędzy drzewami, poruszając się po ziemi. W ten sposób coraz lepiej adaptowali się do poruszania w pozycji wyprostowanej. To zaś pozwalało na patrzenie ponad trawami i wypatrywanie drapieżników. Uważa się, że to właśnie zamiana krajobrazu na sawanny przyczyniła się do rozwoju pozycji wyprostowanej, która stawała się coraz bardziej powszechna wśród przodków człowieka, dodaje uczony.
Badania izotopu żelaza-60, którego warstwa znajduje się na dnie morskim, wskazują, że w omawianym okresie w bezpośrednim sąsiedztwie Ziemi (100–50 parseków czyli średnio w odległości 163 lat świetlnych) dochodziło do eksplozji supernowych.
Wyliczyliśmy jonizację atmosfery, do której doszłoby, gdyby w odległości takiej, jaką wskazuje żelazo-60, miała miejsce eksplozja supernowej. Stwierdziliśmy, że jonizacja niskich partii atmosfery zwiększyłaby się 50-krotnie, mówi Melott. Wraz z Brianem Thomasem z Washburn University uważa on, że musiało to spowodować zwiększenie liczby wyładowań atmosferycznych.
Ostatnia mila atmosfery odczuła to wydarzenie tak, jak zwykle nie odczuwa wybuchów supernowych. Gdy wysokoenergetyczne promienie kosmiczne trafiają w atomy i molekuły w atmosferze, wybijają z nich elektrony. Mamy więc swobodne elektrony, które nie są powiązane z atomami. Zwykle, w procesie wyładowań atmosferycznych, dochodzi do gromadzenia się ładunków pomiędzy chmurami lub chmurami i gruntem, jednak ładunek nie może przepłynąć, gdyż nie ma odpowiednio dużej liczby elektronów. Gdy doszło do jonizacji cały proces stał się znacznie łatwiejszy i zwiększyła się liczba wyładowań, mówi Melott.
Naukowiec dodaje, że w wielu osadach widoczna jest warstwa węgla, której wiek odpowiada okresowi zwiększonego bombardowania przez promieniowanie kosmiczne, a to wskazuje na większą liczbę pożarów. Widzimy dowody na to, że kilka milionów lat temu zaczęło pojawiać się więcej węgla drzewnego i sadzy. Warstwa ta jest wszędzie i nikt nie potrafi wyjaśnić, jak to się stało, że pojawiła się ona na całym świecie w różnych strefach klimatycznych. To może być właśnie wyjaśnienie. Zwiększenie liczby pożarów w wielu miejscach przekształciło lasy w sawanny. Tam, gdzie były lasy, teraz mamy otwarte sawanny. Ich istnienie zaś może być związane z ewolucją człowieka w północno-wschodniej Afryce, szczególnie w Wielkich Rowach Afrykańskich, gdzie znajdujemy wszystkie te skamieniałości naszych przodków, dodaje uczony.
Naukowiec dodaje, że w najbliższej przyszłości nie powinniśmy spodziewać się równie dramatycznych wydarzeń spowodowanych eksplozjami supernowych. Najbliższą nam gwiazdą zdolną do eksplozji w supernową jest czerwony nadolbrzym Betelgeza. Może ona wybuchnąć w każdej chwili, ale znajduje się w odległości około 650 lat świetlnych od Ziemi. Betelgeza jest zbyt daleko, by mieć tak silny wpływ. Nie ma się co martwić. Powinniśmy martwić się rozbłyskami na Słońcu. One stanowią realne zagrożenie dla naszej technologii. Rozbłysk może zniszczyć systemy energetyczne. Wyobraźcie sobie całe miesiące bez energii elektrycznej.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli gwiazdę, która porusza się z prędkością 4 000 000 km/h i jak się wydaje, została przyspieszona przez pobliską supernową. Dzięki jej wąskiemu ogonowi oraz temu, że możemy obserwować ją pod odpowiednim kątem, wyśledziliśmy miejsce narodzin tej gwiazdy, mówi Frank Schinzel z National Radio Astronomy Observatory w Nowym Meksyku.
Pulsar jest obserwowany za pomocą Fermi Gamma-ray Space Telescope oraz Karl G. Jansky Very Large Array w Nowym Meksyku.
Pulsary to bardzo szybko obracające się gwiazdy neutronowe, jądra wielkich gwiazd, które się zapadły. Ten obecny, PSR J0002+6216 został po raz pierwszy zauważony w 2017 roku. Schinzel i jego koledzy zabrali się wówczas za analizę danych z okresu 10 lat i obliczyli z jaką prędkością i w jakim kierunku pulsar się przemieszcza.
J0002 jest odległy od Ziemi o 6500 lat świetlnych i znajduje się w odległości 53 lat świetlnych od pozostałości supernowej CTB 1. Za nim ciągnie się długi na 13 lat świetlnych ogon energii magnetycznej i cząstek, który wskazuje dokładnie na CTB 1.
Przed około 10 000 lat doszło do wybuchu supernowej, której pozostałościami jest CTB 1. Eksplozja wyrzuciła w przestrzeń J0002.
Według dostępnych danych gwiazda porusza się szybciej niż 99% znanych pulsarów. Prędkość przeciętnego pulsara jest 5-krotnie mniejsza. Ma wystarczająca prędkość, by opuścić naszą galaktykę.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.