Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Amerykanie opracowali bandaż, który stymuluje i kieruje wzrostem naczyń krwionośnych na powierzchni rany. Bandaż, nazywany pieczęcią mikrowaskularną, zawiera żywe komórki, które dostarczają czynniki wzrostu do uszkodzonych tkanek według z góry zaplanowanego wzorca. Po tygodniu wzór pieczątki znajduje już odzwierciedlenie w układzie naczyń.

Wszystkie rodzaje tkanek, jakie chcielibyśmy odbudować, z kośćmi, mięśniami czy skórą włącznie, są bardzo unaczynione. Jednym z większych wyzwań w odtwarzaniu sieci waskularnej jest metoda kontrolowania wzrostu i rozmieszczenia przestrzennego nowych naczyń - podkreśla prof. Hyunjoon Kong z University of Illinois.

Inni badacze umieszczali czynniki wzrostu w materiałach do pokrywania ran. Akademicy z Illinois jako pierwsi zastosowali w pieczęci żywe komórki, które zapewniają dostawy czynników wzrostu stale i w ukierunkowany sposób.

Pieczątka ma szerokość ok. 1 cm. Utworzono ją z warstw poli(tlenku etylenu). Ponieważ jest porowata, mogą przez nią przepływać różne cząsteczki. Kanaliki kierują ruchem większych molekuł, np. czynników wzrostu. Zespół Konga testował pieczątkę na kurzym embrionie. Po tygodniu udało się uzyskać żądany wzorzec naczyń.

Gdzie będzie można zastosować wynalazek naukowców? Jak sami twierdzą, do utworzenia obejścia zaczopowanego naczynia czy zwiększenia unaczynienia tkanek ze słabym przepływem krwi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pracując nad zupełnie innym zagadnieniem, specjaliści ze Szwajcarii i Singapuru uzyskali materiał opatrunkowy, który hamuje krwawienie, nie przywierając do rany.
      Nie planowaliśmy tego, ale tak czasem działa nauka. Zaczynasz od badania jednej rzeczy, a kończysz z czymś zupełnie innym - mówi prof. Dimos Poulikakos z Politechniki Federalnej w Zurychu. Jego zespół współpracował z naukowcami z Narodowego Uniwersytetu Singapuru przy rozwijaniu i testowaniu materiałów superhydrofobowych. Celem było odkrycie powłok do urządzeń, które będą miały kontakt z krwią, np. do płucoserca czy pompy krwi.
      Jeden z testowanych materiałów wykazywał niespodziewane właściwości: nie tylko "odpychał" krew (był superhemofobowy), ale i wspomagał proces krzepnięcia. Materiał ten nie nadawał się co prawda na powłokę do pomp krwi itp., lecz akademicy szybko zdali sobie sprawę, że idealnie sprawdzi się jako bandaż czy opatrunek.
      Superhemofobowe bandaże nie nasiąkną krwią i nie będą przywierać do rany, można je więc będzie łatwo usunąć, unikając wtórnego krwawienia. Dodatkowa opcja wspierania krzepnięcia jest, oczywiście, bardzo cenna. Naukowcy podkreślają, że dotąd nie było materiałów, które by jednocześnie "odpychały" krew i sprzyjały krzepnięciu.
      Podczas eksperymentów naukowcy wykorzystali bawełnianą gazę i powlekli ją "mieszaniną" złożoną z nanowłókien węglowych i polimeru: poli(dimetylosiloksanu). Testy laboratoryjne pokazały, że w kontakcie z powleczoną gazą krew krzepła w ciągu kilku minut. Nadal nie do końca wiadomo, czemu nowy materiał wyzwala krzepnięcie; zagadnienie to wymaga dalszych badań, ale ekipa podejrzewa, że dzieje się tak wskutek interakcji z nanowłóknami węglowymi.
      Autorzy artykułu z pisma Nature Communications zademonstrowali również, że materiał ma właściwości antybakteryjne; pałeczki okrężnicy (Escherichia coli) miały kłopot z przywieraniem do niego.
      Z nowym superhydrofobowym materiałem możemy uniknąć ponownego otwarcia ran podczas zmiany bandaża. Ponowne otwarcie ran to duży problem. Głównie z powodu ryzyka infekcji, także niebezpiecznymi patogenami szpitalnymi [...] - podkreśla Athanasios Milionis.
      Politechnika Federalna w Zurychu i Narodowy Uniwersytet Singapuru złożyły już wniosek patentowy. W międzyczasie naukowcy planują udoskonalić/zoptymalizować rozwiązanie. By potwierdzić jego bezpieczeństwo, najpierw przeprowadzą badania na większych zwierzętach, a potem na ludziach (na razie prowadzono testy na szczurach).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Bandaż sprzyjający zrastaniu kości? Czemu nie. Takie właśnie rozwiązanie przetestowali na myszach naukowcy z Duke University. Bandaż wychwytuje i przetrzymuje w miejscu złamania sprzyjającą gojeniu adenozynę.
      Podczas testów bandaż pomagał przyspieszyć tworzenie kostniny oraz waskularyzację (unaczynienie) gojącego się złamania.
      W 2014 r. prof. Shyni Varghese sprawdzała, w jaki sposób biomateriały z fosforanu wapnia sprzyjają naprawie i regeneracji kości. Naukowcy z jej laboratorium odkryli, że ważną rolę w pobudzaniu wzrostu kości odgrywa adenozyna.
      W toku dalszych badań Amerykanie stwierdzili, że organizm "zalewa" okolice gojącego się złamania adenozyną. Niestety, te miejscowo wysokie stężenia są szybko metabolizowane. Varghese zaczęła się więc zastanawiać, czy podtrzymanie dużych poziomów adenozyny może wspomóc proces gojenia.
      Najpierw należało jednak rozwiązać pewien problem. Adenozyna występuje w niskich stężeniach w całym organizmie i odpowiada za wiele ważnych funkcji, które nie mają nic wspólnego z gojeniem kości. By uniknąć niechcianych skutków ubocznych, musieliśmy znaleźć sposób na zatrzymanie adenozyny w okolicy urazu, w dodatku w odpowiednim stężeniu.
      Mając to na uwadze, Varghese i Yuze Zeng zaprojektowali bandaż nakładany bezpośrednio na miejsce złamania, który zawiera sekwestrujące adenozynę cząsteczki boronianów. Później adenozyna jest powoli uwalniania (nie akumuluje się w innych miejscach).
      W ramach najnowszego studium wykazano, że porowate biomateriały z boronianami są w stanie "przechwycić" miejscowy napływ adenozyny po urazie. Następnie bandaże wychwytujące adenozynę gospodarza i bandaże wysycone adenozyną testowano u myszy ze złamaniem kości piszczelowej.
      Po ponad tygodniu u myszy z oboma rodzajami bandaży gojenie zachodziło szybciej niż u gryzoni z grupy kontrolnej (z bandażem bez adenozyny). Po 3 tygodniach u wszystkich zwierząt obserwowano gojenie, ale u myszy z bandażami terapeutycznymi proces tworzenia kości przebiegał sprawniej, widać też było większą objętość kości i lepszą waskularyzację.
      Autorzy artykułu z pisma Advanced Materials podkreślają, że wyniki pokazały, że sprawdzają się zarówno bandaże wychwytujące adenozynę gospodarza, jak i bandaże wcześniej nią wysycone. Można to będzie wykorzystać w leczeniu złamań związanych ze starzeniem i osteoporozą.
      Nasze wcześniejsze badania wykazały, że po złamaniach pacjenci z osteoporozą nie wytwarzają adenozyny. Teraz wyniki wstępnych testów sugerują, że opisywane bandaże mogą pomóc w dostarczeniu adenozyny potrzebnej do naprawy i uniknięciu ewentualnych skutków ubocznych - wyjaśnia Yuze.
      Varghese i Yuze snują plany dotyczące zastosowań. Myślą np. o bandażu, który po spełnieniu swojej roli (wygojeniu złamania) rozkładałby się w organizmie. W przypadku pacjentów z osteoporozą bandaże były zaś trwałe. Umieszczano by je w miejscach nawracających złamań i w razie potrzeby napełniano adenozyną. Amerykanom marzy się też żel (lubrykant) z adenozyną, który pomagałby zapobiegać urazom kości związanym z operacjami rekonstrukcji stawów czy wszczepianiem innych implantów.
      Mówiąc o przyszłości, naukowcy podkreślają, że czeka ich jeszcze dużo pracy. Bandaże muszą zostać ulepszone, tak by skuteczniej wychwytywać i przetrzymywać adenozynę. Musimy też, oczywiście, sprawdzić, czy uzyskamy podobne wyniki podczas badań na ludziach i czy bandaże nie będą wywoływać skutków ubocznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowe badanie na myszach i ludziach pokazało, że drobne kanaliki przecinające szpik kostny czaszki mogą stanowić bezpośrednie połączenie dla komórek odpornościowych reagujących na urazy spowodowane przez udar i inne zaburzenia.
      Zawsze sądziliśmy, że do uszkodzonej tkanki mózgowej przemieszczają się z krwią komórki odpornościowe z naszych rąk i nóg. Uzyskane właśnie wyniki sugerują [jednak], że zamiast tego komórki odpornościowe przemieszczają się skrótem, by szybko dotrzeć do obszarów stanu zapalnego. Stan zapalny odgrywa krytyczną rolę w wielu zaburzeniach mózgu, niewykluczone więc, że nowo opisane kanaliki mają znaczenie dla wielu chorób. Odkrycie otwiera nowe ścieżki badawcze - zaznacza dr Francesca Bosetti z Narodowego Instytutu Zaburzeń Neurologicznych i Udaru (NINDS).
      Dzięki najnowszym technologiom i komórkospecyficznym barwnikom zespół prof. Matthiasa Nahrendorfa z Harvardzkiej Szkoły Medycznej mógł określić, czy komórki odpornościowe dotarły do tkanki mózgu uszkodzonej przez udar lub zapalenie opon ze szpiku kostnego czaszki czy kości piszczelowej. Naukowcy skupili się na neutrofilach.
      Okazało się, że w czasie udaru czaszka jest bardziej prawdopodobnym źródłem neutrofili niż kość piszczelowa. Dla odmiany po zawale czaszka i kość piszczelowa dostarczały do serca podobną liczbę neutrofili.
      Nahrendorf i inni zaobserwowali też, że 6 godzin po udarze w szpiku kostnym czaszki było mniej neutrofili niż w szpiku kości piszczelowej, co sugeruje, że ten pierwszy uwolnił więcej komórek do miejsca urazu. Uzyskane wyniki pokazują, że szpik kostny z ciała w niejednakowym stopniu dostarcza komórki odpornościowe do miejsc urazu/zakażenia. Sugerują też, że szpik kostny czaszki i mózg po urazie jakoś się komunikują, co skutkuje bezpośrednią reakcją pobliskich leukocytów.
      Wg Nahrendorfa, różnice w aktywności szpiku podczas stanu zapalnego mogą zależeć od czynnika pochodzenia stromalnego 1 (ang. stromal cell-derived factor-1, SDF-1), który zatrzymuje komórki odpornościowe w szpiku. Gdy poziom SDF-1 spada, neutrofile są uwalniane ze szpiku. Naukowcy zaobserwowali, że 6 godzin po udarze poziom SDF-1 spadał w szpiku kostnym czaszki, ale nie kości piszczelowej. Amerykanie sądzą, że spadek poziomu SDF-1 może być reakcją na lokalny uraz tkanki. Taki alarm mobilizuje zaś wyłącznie szpik kostny najbliższy miejscu stanu zapalnego.
      Po zgromadzeniu tych wszystkich informacji akademicy chcieli się dowiedzieć, jak neutrofile dostają się do uszkodzonej tkanki. Zaczęliśmy bardzo dokładnie badać czaszkę, oglądając ją pod wszelkimi kątami. Nieoczekiwanie odkryliśmy drobne kanały, które bezpośrednio łączą szpik z zewnętrzną wyściółką mózgu [oponą twardą].
      Dzięki mikroskopowi konfokalnemu naukowcy mogli obserwować neutrofile przemieszczające się przez kanaliki.
      Kanaliki w ludzkiej czaszce miały 5-krotnie większą średnicę niż kanaliki mysie. W przyszłości naukowcy chcą sprawdzić, jakie inne typy komórek się przez nie przemieszczają.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pysk ryb pił jest wyciągnięty w tzw. rostrum. Okazuje się, że to broń typu wszystko w jednym, bo nie tylko pozwala wyczuć ofiarę, ale i po zamachach wykonywanych na boki z imponującą prędkością zmienia się w widelec - kąsek nabija się bowiem na zęby.
      Wcześniej biolodzy wiedzieli, że ryby piły reagują na pole elektryczne ofiar. Na rostrum znajdują się tysiące elektroreceptorów, dodatkowo kanaliki w pokrywającej je skórze pozwalają wykryć ruch wody. Teraz australijsko-amerykańskiemu zespołowi udało się sfilmować te krytycznie zagrożone wyginięciem zwierzęta w akcji, co rozwiało wątpliwości dotyczące szczegółów działania piły.
      Barbara Wueringer z University of Queensland podkreśla, że była bardzo zaskoczona, widząc biegłość, z jaką ryby piły posługują się swoim "oprzyrządowaniem". Wystarczy powiedzieć, że poruszają rostrum z prędkością kilku wymachów na sekundę.
      Osobnikom sfilmowanym dzięki ukrytym kamerom podawano kawałki tuńczyków i kiełbi. Pchnięcia były niekiedy wystarczająco silne, by przepołowić rybne bloki. Wyszło też na jaw, że rostrum świetnie się nadaje do przyszpilania upolowanych kąsków do dna.
      W ramach najnowszego studium akademicy obserwowali, jak niedawno schwytane piły słodkowodne (Pristis microdon) nabijały "ofiarę", reagując na słabe pole elektryczne wody i dna, które miało przypominać to charakterystyczne dla żywych zwierząt.
      Fakt, że ryby piły poruszają się w kolumnie wody, by ściągnąć stamtąd ofiary, świadczy, że są bardziej aktywnymi myśliwymi niż dotąd sądzono. Kiedyś rostrum postrzegano jako pogrzebacz do przekopywania osadów dennych. Teraz okazało się, że mamy raczej do czynienia z, jak to ujmuje Wueringer, anteną połączoną z bronią. Rostra występujące u innych ryb spełniają albo funkcję wykrywacza, albo broni. U żaglicowatych pozwalają ogłuszać ofiary, natomiast wiosłonosowate wykorzystują rozmieszczone tam receptory do wyczuwania i nakierowywania się na pole elektryczne planktonu.
      Ryby piły nie kopią co prawda w dnie, ale przesuwają po nim rzędy zębów. Wg naukowców, zajmują się wtedy ostrzeniem. Ich zachowanie porównywano z rochowatymi, które mają z rybami piłami wspólnego przodka, ale nie wykształciły piły.
    • przez KopalniaWiedzy.pl
      Podczas polowania palczak madagaskarski, zwany też aj-ajem, rozgrzewa swój zakończony hakowatym pazurem długi środkowy palec. Palec ten służy zwierzęciu do opukiwania pni drzew, głównie bambusów, i wydłubywania owadów oraz larw.
      Zdjęcia termograficzne ujawniły, że normalnie dziwny palec aj-aja jest chłodniejszy od pozostałych, ale podczas żerowania jego temperatura rośnie nawet o 6 stopni Celsjusza.
      Naukowcy z Darmouth University, studentka Gillian Moritz i nadzorujący jej prace dr Nathaniel Dominy, uważają, że utrzymując niższą temperaturę cienkiego palca, aj-aj oszczędza energię. To uderzające, o ile chłodniejszy był 3. palec, gdy zwierzę go nie używało i jak szybko ogrzewał się, gdy aj-aj aktywnie poszukiwał pokarmu. Sądzimy, że stosunkowo niskie temperatury nieużywanego palca są związane z jego budową. [Jest długi i cienki], co skutkuje dość wysokim stosunkiem powierzchni do objętości, a to utrudnia utrzymanie ciepła - opowiada Moritz.
      By palec nadawał się do wykonywania swoich zadań i był wrażliwy na drgania, w jego skórze musi się znajdować wiele mechanoreceptorów. Ze względu na zaangażowanie "specjalistycznej aparatury", posługiwanie się środkowym palcem musi być kosztowne z energetycznego punktu widzenia, a przy niższych temperaturach otoczenia, przez gęsto rozmieszczone receptory ucieka sporo ciepła.
      Moritz podaje 2 wyjaśnienia, w jaki sposób palczak madagaskarski reguluje ciepłotę palca. Pierwsza teoria bazuje na rozszerzaniu i kurczeniu naczyń, które dostarczają do niego krew. Druga hipoteza, również związana z naczyniami, jest taka, że chroniąc wyjątkowo długi palec przed uszkodzeniami, podczas poruszania się i w okresach nieaktywności aj-aj wygina go mocno do tyłu. Prowadzi to do zaciśnięcia tętnicy, a ponieważ dopływa mniej krwi, temperatura palca spada.
      W ramach studium Amerykanie obserwowali podczas różnych czynności 8 palczaków madagaskarskich. Okazało się, że gdy staw śródręczno-paliczkowy rozciągał się wskutek odginania nieużywanego "przyrządu", temperatura wydłużonego palca była, w porównaniu do innych palców, niższa o ok. 2,3 st. Celsjusza. Kiedy staw zginał się podczas opukiwania, ogrzewał się średnio o 2 stopnie. Podczas gdy temperatura innych palców pozostawała niezmienna, ciepłota wyspecjalizowanego palca zmieniała się czasem nawet o 6 stopni.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...