Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Odkryto chmury pierwotnego gazu z czasów Wielkiego Wybuchu
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Kierowcy w podeszłym wieku częściej niż ich młodsi koledzy mylą pedał gazu z pedałem hamulca. Dlatego też w Japonii, kraju z największym na świecie odsetkiem seniorów w populacji, nakazano kierowcom powyżej 75. roku życia przeprowadzanie okresowych testów poznawczych. Jednak dotychczas brakowało badań opisujących procesy zachodzące w mózgu podczas naciskania pedałów gazu i hamulca.
Zbadania tego problemu podjęli się Nobuyuki Kawai i Ryuzabura Nakata z Uniwersytetu w Nagoi. Naukowcy przeprowadzili eksperymenty z udziałem osób starszych, których mediana wieku wynosiła 68,7 lat oraz studentów, wśród których mediana wieku to 20,8 lat. Zadaniem badanych było naciskanie lewego bądź prawego przycisku lewą lub prawą stopą lub ręką w reakcji na odpowiedni sygnał. Wskazywał on, czy należy nacisnąć prawy czy lewy przycisk i czy należy do tego użyć prawej czy lewej ręki lub nogi. Czasami uczestnicy mieli więc naciskać przycisk ruchem na wprost (tak jak naciskamy pedał gazu, który znajduje się pod naszą prawą nogą), a czasem na skos (w ten sposób naciskamy pedał hamulca). Uczeni skupili się na badaniu reakcji w lewej części grzbietowo-bocznej kory przedczołowej.
U wszystkich uczestników badań naciskanie przycisku nogą wiązało się w większą liczbą popełnianych błędów, dłuższym czasem reakcji i większą aktywacją mózgu niż w naciskanie przycisku ręką. Co interesujące, naciskanie przycisku nogą na skos powodowało większą aktywację mózgu niż naciskanie go na wprost. Różnicy takiej nie zauważono w przypadku rąk, co sugeruje, że uczestnicy badań mieli większe kłopoty podczas używania nogi do przyciskania na skos.
Czas reakcji osób starszych był dłuższy niż osób młodszych. U seniorów dochodziło do większej aktywacji mózgu, co jest zgodne z tym, co wiemy o starzeniu się i o sposobach, w jaki mózg kompensuje spadek zdolności poznawczych. Jednak dzięki temu mechanizmowi kompensacji osoby starsze nie popełniały więcej błędów niż osoby młodsze.
Badania wskazują zatem, że wciskanie pedałów nogami, szczególnie po skosie, jest wymagającym zadaniem. Osoby starsze i tak muszą zaangażować większą część mózgu niż osoby młodsze i potrzebują więcej czasu na reakcję. Dopiero wówczas nie popełniają więcej błędów młodzi. W sytuacjach stresowych lub gdy mózg zajęty jest dodatkowymi czynnościami, jak np. obserwacja drogi, rozmowa z inną osobą, mogą pojawiać się błędy i stąd może brać się większa w tej grupie liczba wypadków w wyniku pomylenia pedału gazu z hamulcem.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Astronomowie odkryli najpotężniejszą eksplozję we wszechświecie od czasu Wielkiego Wybuchu. Eksplozja pochodziła z supermasywnej czarnej dziury znajdującej się w galaktyce położonej setki milionów lat świetlnych od Ziemi. W czasie wybuchu uwolniło się 5-krotnie więcej energii niż z wcześniejszej najpotężniejszej znanej nam eksplozji.
Obserwowaliśmy już takie wydarzenia w centrach galaktyk, ale to jest naprawdę olbrzymie. I nie wiemy, dlaczego jest tak potężne. Wybuch przebiegał bardzo powoli. Jak eksplozja w zwolnionym tempie rozciągająca się setki milionów lat, mówi profesor Melanie Johnston-Hollitt.
Do potężnego wybuchu doszło w Supergromadzie w Wężowniku. Był on tak silny, że wypalił dziurę w supergorącej plazmie otaczającej czarną dziurę.
Początkowo, gdy teleskopy działające w zakresie promieniowania rentgenowskiego zauważyły dziurę w plazmie, odrzucono hipotezę, że mogła ona powstać w wyniku eksplozji, gdyż nie wyobrażano sobie, że może dojść do tak silnego wybuchu.
Sceptycyzm był spowodowany siłą wybuchu konieczną do wywołania takiego efektu. Ale okazało się, że naprawdę do niego doszło. Wszechświat to dziwne miejsce, mówi Johnston-Hollit. Dopiero, gdy do obserwacji zaprzęgnięto radioteleskopy, naukowcy w pełni zdali sobie sprawę z tego, co odkryli. Dane z radioteleskopów pasowały do danych z teleskopów rentgenowskich jak rękawiczka do ręki, dodaje współautor badań doktor Maxim Markevitch z Goddard Space Flight Center.
Profesor Johnston-Hollitt porównuje swoją pracę do archeologii. Mamy teraz narzędzia, radioteleskopy pracujące na niskich częstotliwościach, które pozwolą nam kopać głębiej w przeszłości. Powinniśmy być w stanie wykryć więcej tego typu eksplozji, mówi.
Uczona przypomina, że odkrycia dokonano za pomocą czterech różnych teleskopów, w tym Murchison Widefield Array (MWA), którego budowa jeszcze nie została dokończona. Obecnie MWA składa się z 2048 anten. Wkrótce będziemy mogli wykorzystać 4069 anten, dzięki czemu teleskop będzie 10-krotnie bardziej czuły niż obecnie. MWA to jedna z czterech części Square Kilometre Array (SKA).
« powrót do artykułu -
przez KopalniaWiedzy.pl
Metale z bloku d, takie jak cynk, miedź i chrom, wiążą się ze stanowiącym część cząsteczki proinsuliny peptydem C i wpływają na jego zachowanie. Naukowcy z Uniwersytetu Kalifornijskiego w Davis (UCD) wyjaśniają, że ich badanie reprezentuje nową dziedzinę nauki - metaloendokrynologię, która zajmuje się rolą metali w procesach biologicznych.
Metale spełniają ważną rolę w wielu procesach biochemicznych. Transportująca tlen hemoglobina zawiera żelazo, zaś cynk i miedź biorą udział w ok. 1/3 wszystkich funkcji organizmu.
Zespół prof. Marie Heffern z UCD stosuje nowe techniki, by ustalić, jak metale są rozłożone w i na zewnątrz komórek, a także jak wiążą się one z białkami i innymi cząsteczkami oraz w jaki sposób na nie wpływają.
W ramach nowego studium Amerykanie przyglądali się peptydowi C, który jest badany pod kątem terapii choroby nerek i uszkodzenia nerwów (neuropatii) w przebiegu cukrzycy. Lepsze zrozumienie, jak peptyd C zachowuje się w różnych warunkach, może mieć spore znaczenie dla produkcji leków.
Peptyd C łączy łańcuchy A i B insuliny. Jest wycinany podczas uwalniania insuliny z trzustki i wraz z nią dostaje się do krwiobiegu. Wcześniej uważano go za produkt uboczny powstawania insuliny, jednak teraz wiadomo, że sam pełni funkcję hormonu.
Podczas testów w probówce akademicy sprawdzali, jak szybko cynk, miedź i chrom wiążą się z peptydem C i jak metale te wpływają na zdolność komórek do jego wychwytywania.
Okazało się, że metale wywierają lekki wpływ na strukturę drugorzędową peptydu C. Choć pewne warunki sprzyjają przyjmowaniu przez peptyd kształtu α‐helisy, związanie z metalem hamuje taką zmianę konformacji.
Miedź i chrom nie dopuszczały do wychwytu hormonu przez komórki; inne metale, takie jak cynk, kobalt i magnez, nie działały jednak w ten sposób.
Wyniki, które opublikowano w piśmie ChemBioChem, pokazują, że metale mogą dostrajać aktywność hormonów, np. peptydu C, zmieniając ich budowę lub oddziałując na ich wychwytywanie przez komórki.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W centrum Drogi Mlecznej znajduje się olbrzymia czarna dziura o masie około 4,3 miliona razy większej niż masa Słońca. Astronomowie twierdzą, że już wkrótce Sagittarius A*, bo tak nazwano ten obiekt, rozbłyśnie dzięki chmurze gazu, która zmierza w jego kierunku.
O istnieniu Sagittariusa A* wiemy z intensywnego promieniowania na obrzeżach dziury. Jest ono emitowane przez rozgrzaną materię wpadającą do dziury. Jednak z wyjątkiem promieniowania radiowego i niewielkiej emisji promieni X, Sagittarius A* jest niezwykle spokojna, co oznacza, że wokół niej niewiele się dzieje. Ten spokój powoduje, że niewiele o czarnej dziurze wiadomo. Jednak wkrótce to się zmieni.
Od 2002 roku astronomowie obserwują chmurę gazów o masie 3-krotnie większej od masy Ziemi, która pędzi z prędkością 8,4 miliona kilometrów na godzinę w kierunku Sagittariusa A*. W miarę zbliżania się do strefy akrecji, obszaru, w którym materia zaczyna opadać do czarnej dziury, chmura ulega rozerwaniu. Obecnie obserwujemy, jak się rozpada. Od kilku lat na naszych oczach zachodzą zmiany. W najbliższym czasie proces ten stanie się jeszcze bardziej dramatyczny... chmura znacznie przyspiesza w kierunku czarnej dziury - mówi Stefan Gillessen, astronom z Instytutu Maksa Plancka w Garching.
Chmura dotrze do dziury w 2012 lub 2013 roku. Astronomowie spodziewają się, że gdy materia zacznie opadać do Sagittariusa A* emisja promieniowania X stanie się znacznie bardziej intensywna, a w ciągu kilku lat powstanie gigantyczna flara. Prawdopodobnie pierwszymi urządzeniami, które zauważą rozbłysk, będą satelity wykrywające promieniowanie X, ale później Sagittarius A rozświetli się w pełnym zakresie promieniowania - stwierdził Gillessen.
-
przez KopalniaWiedzy.pl
Choć naukowcy od dawna wiedzieli, że wiele bakterii wytwarza siarkowodór, jednak dotąd myśleli, że stanowi on produkt uboczny aktywności komórkowej. Teraz okazało się, że H2S odkrywa ważną rolę w ochronie bakterii przed wpływem antybiotyków.
Dr Evgeny Nudler z NYU School of Medicine wykazał, że siarkowodór działa jako ogólny mechanizm obronny przeciw stresowi oksydacyjnemu, za którego pośrednictwem sporo antybiotyków zabija bakterie. Hamując opisany mechanizm, można by zwiększać wrażliwość mikrobów na niższe stężenia leków, a nawet odwracać lekooporność różnych ludzkich patogenów, w tym gronkowców (stafylokoków), pałeczek okrężnicy (E. coli) czy z rodzaju Pseudomonas.
Zaskakująco mało wiemy o biochemii i fizjologii H2S u pospolitych bakterii. To ekscytujące, że nasze badania mogą potencjalnie wpłynąć na rozwiązanie narastającego problemu antybiotykooporności. Sugerują bowiem nowe koncepcyjnie podejście - terapię adiuwantową, czyli mówiąc prościej, leczenie skojarzone. Obierałoby ono na cel gazy bakteryjne.
Amerykanie zauważyli, że bakterie wytwarzające zarówno siarkowodór, jak i tlenek azotu(II), np. laseczki wąglika, nie przeżyją bez obu tych gazów (nawet w normalnych warunkach wzrostu). Gazy mogą się zastępować, wypełniać lukę po wyeliminowaniu drugiego składnika tandemu, ale przynajmniej jeden z nich musi być obecny.
W poprzednim studium z 2009 r., które również ukazało się w Science, zespół doktora Nudlera wykazał, że NO chroni bakterie przed antybiotykami w podobny sposób co H2S.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.