Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

U wielu bakterii wykształciła się lekooporność. Tempo jej narastania jest wyższe od tempa opracowywania nowych antybiotyków. Naukowcy z University of Wisconsin–Milwaukee (UMW) opracowali jednak coś nowego: związek, który blokuje działanie występującego u Gram-ujemnych bakterii systemu sekrecji typu III (ang. type III secretion system, T3SS). Jego część przypomina żądło, za pomocą którego patogeny wprowadzają do komórek gospodarza białka efektorowe, np. toksyny. Eliminując wypustkopodobne filamenty, sprawiamy, że bakterie nie mają nam jak zagrozić.

Prof. Ching-Hong Yang z UWM i prof. Xin Chen z Changzhou University przetestowali nowy związek na dwóch gatunkach bakterii atakujących rośliny i na pałeczkach ropy błękitnej, które jako bakterie oportunistyczne wywołują zakażenie u osób z obniżoną odpornością, np. pacjentów z nowotworami albo AIDS. Zauważyli, że jest skuteczny w odniesieniu do wszystkich 3 bakterii.

Wynikami zespołu zainteresowały się dwie firmy, które prowadzą testy oryginalnej substancji i pochodnych w nadziei na ich komercjalizację.

Z relacji prasowej uniwersytetu wynika, że naukowcy uzyskali więcej niż jeden tego typu związek. Omówiono jednak tylko ten działający na T3SS. Białka wchodzące w skład systemu można podzielić na 2 grupy: białka zakotwiczone w błonie i zewnątrzkomórkowe wypustkopodobne filamenty. Te ostatnie nazywa się niekiedy kanałem translokującym. Patogeny z T3SS są bardzo sprytne. Wytwarzają wąski wyrostek, który działa jak igła [...]. Komórka gospodarza nie umie rozpoznać igły patogenu dlatego mechanizmy obronne nie zostają uruchomione - wyjaśnia Yang.

Mimo że Yang i Chen testowali swój związek tylko na 3 gatunkach bakterii, wierzą, że zadziała on na o wiele szersze spektrum. T3SS występuje bowiem u szeregu bakterii Gram-ujemnych, np. pałeczek z rodzaju Shigella, które wywołują zatrucia pokarmowe, E. coli czy chlamydii.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

g+

gronkowce (Staphylococcus)

paciorkowce (Streptococcus)

laseczka tężca (Clostridum tetani)

laseczka wąglika (Bacillus anthracis)

maczugowiec błonicy (Corynebacterium diphtheriae)

prątek gruźlicyKocha (Mycobacterium tuberculosis)

prątek trądu (Mycobacterium leprae)

 

g-

pałeczki z rodzaju Brucella

pałeczki z rodzaju Salmonella

pałeczki z rodzaju Shigella

krętek blady (Treponema pallidum)

pałeczka okrężnicy (Escherichia coli)

pałeczka dżumy (Yersinia pestis)

przecinkowiec cholery (Vibrio cholerae)

pałeczka Helicobacter pylori

 

same frykasy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W sytuacji, gdy dochodzi do wykrycia uwolnienia substancji niebezpiecznych, najważniejsze jest szybkie i precyzyjne zlokalizowanie źródła uwolnienia oraz przewidzenie kierunku rozchodzenia się substancji. Używane obecnie modele dyspersyjne wymagają bardzo dużych zasobów obliczeniowych. Mogą jednak zostać zastąpione przez modele bazujące na Sztucznych Sieciach Neuronowych, SSN (ang. Artificial Neutral Networks, ANN), co pozwoli na monitorowanie skażenia w czasie rzeczywistym. W badaniu możliwości wykorzystania takich modeli uczestniczą naukowcy z Departamentu Układów Złożonych NCBJ.
      Obszar odpowiadający części centralnego Londynu, będący podstawą do przygotowania danych dla SSN, jak również wykorzystany w eksperymencie DAPPLE (skrzyżowanie Marylebone Road i Gloucester Place, 51.5218N 0.1597W)
      Od kilku lat w Centrum Analiz Zagrożeń MANHAZ prowadzone są prace nad algorytmami umożliwiającymi lokalizację źródła skażenia, w oparciu o, pochodzące z sieci detektorów, dane na temat stężeń uwolnionej substancji. Głównym zadaniem istniejących we wszystkich miastach grup reagowania kryzysowego, jest szybkie odpowiadanie na wszelkie zagrożenia dla ludzi i środowiska. Podstawowym czynnikiem decydującym o powodzeniu lub niepowodzeniu danego działania jest czas reakcji.
      Obecnie różne substancje chemiczne są używane w większości dziedzin przemysłu, co sprawia, że transport i przechowywanie materiałów toksycznych wiąże się z ciągłym ryzykiem uwolnienia ich do atmosfery i do zajścia skażenia. Dużym wyzwaniem są sytuacje, w których czujniki rozmieszczone na terenie miasta zgłaszają niezerowe stężenie niebezpiecznej substancji, której źródło nie jest znane. W takich przypadkach ważne jest, aby system był w stanie w czasie rzeczywistym oszacować najbardziej prawdopodobną lokalizację źródła zanieczyszczenia, wyłącznie w oparciu o dane o stężeniu, pochodzące z sieci czujników.
      Algorytmy, które radzą sobie z zadaniem można podzielić na dwie kategorie. Pierwszą są algorytmy opierające się na podejściu wstecznym, czyli analizie problemu zaczynając od jego ostatniego etapu, ale są one dedykowane obszarom otwartym lub problemowi w skali kontynentalnej. Drugą kategorię stanowią algorytmy, które bazują na próbkowaniu parametrów odpowiedniego modelu dyspersji (parametrów takich, jak lokalizacja źródła), aby wybrać ten, który daje najmniejszą różnicę między danymi wyjściowymi, a rzeczywistymi pomiarami stężeń, wykonywanymi przez sieć detektorów. Podejście to sprowadza się do wykorzystania algorytmów próbkowania, w celu znalezienia optymalnych parametrów modelu dyspersji, na podstawie porównania wyników modelu i detekcji zanieczyszczeń.
      Ze względu na efektywność zastosowanego algorytmu skanowania parametrów, każda rekonstrukcja wymaga wielokrotnych uruchomień modelu. Rekonstrukcja w terenie zurbanizowanym, która jest głównym przedmiotem zainteresowania badaczy, wymaga zaawansowanych modeli dyspersji, uwzględniających turbulencje pola wiatru wokół budynków. Najbardziej niezawodne i dokładne są modele obliczeniowej dynamiki płynów (ang. Computational Fluid Dynamics, CFD). Stanowią one jednak bardzo wymagające obliczeniowo wyzwanie. Musimy zdawać sobie sprawę z tego, że aby znaleźć najbardziej prawdopodobne źródło skażenia, model dyspersji trzeba uruchomić dziesiątki tysięcy razy. Oznacza to, że użyty model musi być szybki, aby można go było zastosować w systemie awaryjnym, pracującym w czasie rzeczywistym. Zakładając na przykład, że średni czas potrzebny na wykonanie samych obliczeń modelu dyspersji w terenie zurbanizowanym wynosi 10 minut, pełna rekonstrukcja z jego wykorzystaniem będzie trudna do przeprowadzenia w dopuszczalnie krótkim czasie.
      Rozwiązaniem tego problemu, nad którym pracuje dr Anna Wawrzyńczak-Szaban z Centrum Analiz Zagrożeń MANHAZ w NCBJ, przy współpracy z Instytutem Informatyki UPH w Siedlcach, jest wykorzystanie w systemie rekonstrukcji sztucznej sieci neuronowej, zamiast modelu dyspersji, w terenie zurbanizowanym. Chodzi o to, by sztuczna sieć neuronowa była skuteczna w symulacji transportu zanieczyszczeń w powietrzu, na terenie zurbanizowanym. Jeśli to się powiedzie, SSN może działać jako model dyspersji w systemie lokalizującym w czasie rzeczywistym źródło skażenia. Podstawową zaletą SSN jest bardzo krótki czas odpowiedzi – opisuje dr Anna Wawrzyńczak-Szaban. Oczywiście SSN musi być wytrenowana w stałej topologii miasta, przy użyciu rzeczywistych warunków meteorologicznych z wykorzystaniem odpowiedniego i zwalidowanego modelu dyspersji. Proces ten wymaga wielu symulacji, służących jako zestawy danych treningowych dla SSN. Proces uczenia sieci SSN jest kosztowny obliczeniowo, ale po przeszkoleniu, metoda byłaby szybkim narzędziem do szacowania stężeń punktowych dla danego źródła zanieczyszczenia.
      W pracy opublikowanej przez naukowców1) przedstawiono wyniki trenowania sieci neuronowej w oparciu o dane, uczące rozprzestrzeniania się toksyn w powietrzu w centrum Londynu, wykorzystując domenę testową eksperymentu polowego DAPPLE2). Dane uczące SSN wygenerowano za pomocą modelu dyspersji Quick Urban & Industrial Complex (QUIC). Przetestowaliśmy różne struktury SSN, czyli liczby jej warstw, neuronów i funkcji aktywacji. Wykonane testy potwierdziły, że wyszkolona SSN może w wystarczającym stopniu symulować turbulentny transport toksyn, unoszących się w powietrzu na obszarze silnie zurbanizowanym – objaśnia dr Anna Wawrzyńczak-Szaban. Ponadto pokazaliśmy, że wykorzystując SSN można skrócić czas odpowiedzi systemu rekonstrukcji. Czas wymagany, przez prezentowaną w pracy SSN, do oszacowania trzydziestominutowych stężeń gazu w 196 000 punktów sensorowych wyniósł 3 s W przypadku modelu QUIC, czas został oszacowany jako co najmniej 300 s, co daje nam 100-krotne przyspieszenie obliczeń. Biorąc to pod uwagę, czas rekonstrukcji w rzeczywistej sytuacji awaryjnej może być krótki, co skutkuje szybką lokalizacją źródła zanieczyszczenia.
      W trakcie badań okazało się, że zapewnienie trenowanej SSN pełnej informacji prowadzi czasami do pewnych wyzwań obliczeniowych. Na przykład w pojedynczej symulacji rozproszenia toksyn w powietrzu, na obszarze miejskim, nawet 90% odczytów z czujników może mieć wartość zerową. Prowadzi to do sytuacji, w której postać docelowa SSN obejmuje kilka procent wartości dodatnich i większość zer. W efekcie SSN skupia się na tym, czego jest więcej – na zerach, co sprawia, że nie dostosowuje się do szukanych elementów badanego problemu. Uwzględniając zerową wartość koncentracji w danych treningowych, musimy zmierzyć się z kilkoma pytaniami: jak uwzględnić zero? Jak przeskalować dany przedział, aby „ukryć” zera? Czy w ogóle uwzględniać zera? Czy ograniczyć ich liczbę? – podkreśla dr Wawrzyńczak-Szaban.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wykorzystywana w średniowieczu mikstura - balsam oczny Balda (ang. Bald's eyesalve) - może znaleźć zastosowanie we współczesnej terapii. Naukowcy z Uniwersytetu w Warwick wykazali, że jest on skuteczny wobec szeregu patogenów Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych, a także wobec 5 bakterii hodowanych w formie biofilmu.
      Bald's eyesalve opisano w staroangielskim (IX-w.) podręczniku medycznym Bald's Leechbook (zwanym także Medicinale Anglicum). Miksturę stosowano na jęczmień - torbielowatą infekcję powieki. Przyrządzano ją z czosnku, dodatkowej rośliny z rodzaju Allium (czosnek), np. cebuli lub pora, wina i krowich kwasów żółciowych. Zgodnie z recepturą, po zmieszaniu, a przed użyciem składniki muszą stać przez 9 nocy w mosiężnym naczyniu.
      Pięć lat temu naukowcy z Uniwersytetu w Nottingham wykorzystali Bald's eyesalve do walki z metycylinoopornym gronkowcem złocistym (MRSA). Opierając się na ich badaniach, zespół z Warwick ustalił, że Bald's eyesalve wykazuje obiecujące działanie antybakteryjne i tylko w niewielkim stopniu szkodzi ludzkim komórkom.
      Mikstura była skuteczna przeciw szeregowi bakterii Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych. Aktywność utrzymywała się także przeciwko 5 bakteriom hodowanym w postaci biofilmu: 1) Acinetobacter baumannii, 2) Stenotrophomonas maltophilia, 3) gronkowcowi złocistemu (Staphylococcus aureus), 4) Staphylococcus epidermidis i 5) Streptococcus pyogenes.
      Bakterie te można znaleźć w biofilmach infekujących cukrzycowe owrzodzenie stopy (tutaj zaś, jak wiadomo, sporym problemem może być lekooporność).
      Jak wyjaśniają naukowcy, w skład balsamu ocznego Balda wchodzi czosnek, a ten zawiera allicynę (fitoncyd o działaniu bakteriobójczym). W ten sposób można by wyjaśnić aktywność mikstury wobec hodowli planktonowych. Sam czosnek nie wykazuje jednak aktywności wobec biofilmów, dlatego antybiofilmowego działania Bald's eyesalve nie da się przypisać pojedynczemu składnikowi. By osiągnąć pełną aktywność, konieczne jest ich połączenie.
      Wykazaliśmy, że średniowieczna mikstura przygotowywana z cebuli, wina i kwasów żółciowych może zabić całą gamę problematycznych bakterii, hodowanych zarówno w formie planktonowej, jak i biofilmu. Ponieważ mikstura nie powoduje większych uszkodzeń ludzkich komórek i nie szkodzi myszom, potencjalnie moglibyśmy opracować z tego środka bezpieczny i skuteczny lek antybakteryjny - podkreśla dr Freya Harrison.
      Większość wykorzystywanych współcześnie antybiotyków pochodzi od naturalnych substancji, ale nasze badania unaoczniają, że pod kątem terapii zakażeń związanych z biofilmem należy eksplorować nie tylko pojedyncze związki, ale i mieszaniny naturalnych produktów.
      Szczegółowe wyniki badań opublikowano w piśmie Scientific Reports.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...