Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Roboty wzorowane na muchołówkach amerykańskich mogą być zasilanie owadami. Powstały już dwa prototypy takich maszyn, które 1) wykorzystują spełniające funkcje mięśni jonowe kompozyty polimer-metal (ang. ionic polymeric metal composite, IPMC), nanoczujniki oraz nanosiłowniki albo 2) materiały z pamięcią kształtu.

Jak tłumaczy autor pierwszego z badań Mohsen Shahinpoor z University of Maine, muchołówka chwyta owady za pomocą dwóch liści pułapkowych. Gdy zwabiona słodkim nektarem i czerwonym kolorem ofiara potrąci 2-krotnie jeden włosek lub dwa różne włoski w odstępie mniej niż 1/2 minuty, pułapka zamknie się w zaledwie 100 milisekund.

Pod wpływem zgięcia włoska czuciowego generowane są potencjały czynnościowe (mamy do czynienia z bramkowanymi napięciem kanałami jonowymi). Pobudliwe są wszystkie komórki budujące klapy, co prawdopodobnie służy zwiększeniu prędkości przekazywania sygnału. Shahinpoor podkreśla, że sposób, w jaki liście pułapkowe zaginają się do środka, w dużym stopniu przypomina zachowanie IPMC w polu elektrycznym. Co więcej, mechanoelektryczne właściwości czuciowe IPMC są również niezwykle podobne do cech włosków muchołówki.

Seung-Won Kim z Seulskiego Uniwersytetu Narodowego (autor drugiego z badań) wykorzystał materiały z pamięcią kształtu, które przełączają się między dwoma stabilnymi kształtami, kiedy podziała się na nie siłą, wysoką temperaturą bądź prądem elektrycznym. Koreańczycy posłużyli się muszlą z włókna węglowego, a między jej klapami umieścili metalową sprężynę z pamięcią kształtu. Pod wpływem ciężaru owada sprężyna się nagle kurczy, a pułapka zamyka. Klapy ponownie się otwierają, gdy do sprężyny przyłoży się napięcie.

Shahinpoor oparł się na sztucznych mięśniach z pokrytej złotymi elektrodami polimerowej membrany. Prąd płynący przez błonę powoduje, że wygina się ona w jedną stronę. Gdy zmieni się bieguny, a zatem kierunek przepływu prądu, membrana wygina się w odwrotną stronę. Samo wyginanie materiału także wytwarza napięcie, co Shahinpoor wykorzystał w czujnikach. Niewielkie napięcie powstałe po wylądowaniu owada uruchamia większe źródło prądowe. Dochodzi do sytuacji, że jeden z liści jest naelektryzowany ujemnie, a drugi dodatnio, a ponieważ przeciwne ładunki się przyciągają, klapy się zamykają.

Warto przypomnieć, że w przeszłości skonstruowano już robota na owady i resztki organiczne. Jest to Ecorobot naukowców z Bristol Robotics Lab. Prace specjalistów z USA i Korei Południowej na pewno przydadzą się przy jego dalszym rozwijaniu.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naturalne jaskinie to ważne cele przyszłych misji NASA. Będą one miejscem poszukiwań dawnego oraz obecnego życia w kosmosie, a także staną się schronieniem dla ludzi, mówi Ali Agha z Team CoSTAR, który rozwija roboty wyspecjalizowane w eksploracji jaskiń. Jak wcześniej informowaliśmy, na Księżycu istnieją gigantyczne jaskinie, w których mogą powstać bazy.
      Team CoSTAR, w skład którego wchodzą specjaliści z Jet Propulsion Laboratory i California Instute of Technology to jednym z zespołów, który przygotowuje się do wzięcia udziału w tegorocznych zawodach SubT Challenge organizowanych przez DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
      CoSTAR wygrał ubiegłoroczną edycję SubT Urban Circuit, w ramach której roboty eksplorowały tunele stworzone przez człowieka. Teraz coś na coś trudniejszego i mniej przewidywalnego. Czas na naturalne jaskinie i tunele.
      Specjaliści z CoSTAR i ich roboty pracują w jaskiniach w Lava Beds National Monument w północnej Kalifornii. Jaskiniowa edycja Subterranean Challenge jest dla nas szczególnie interesująca, gdyż lokalizacja taka bardzo dobrze pasuje do długoterminowych planów NASA. Chce ona eksplorować jaskinie na Księżycu i Marsie, w szczególności jaskinie lawowe, które powstały w wyniku przepływu lawy. Wiemy, że takie jaskinie istnieją na innych ciałach niebieskich. Kierowany przez Jen Blank zespół z NASA prowadził już testy w jaskiniach lawowych i wybrał Lava Beds National Monument jako świetny przykład jaskiń podobnych do tych z Marsa. Miejsce to stawia przed nami bardzo zróżnicowane wyzwania. Jest tam ponad 800 jaskiń, mówi Ben Morrell z CoSTAR.
      Eksperci zwracają uwagę, że istnieje bardzo duża różnica w dostępności pomiędzy tunelami stworzonymi przez człowieka, a naturalnymi jaskiniami. Z jednej strony struktury zbudowane ludzką ręką są bardziej rozwinięte w linii pionowej, są wielopiętrowe, z wieloma poziomami, schodami, przypominają labirynt. Jaskinie natomiast charakteryzuje bardzo trudny teren, który stanowi poważne wyzwanie nawet dla ludzi. Są one trudniej dostępne, z ich eksploracją wiąże się większe ryzyko, są znacznie bardziej wymagające dla systemów unikania kolizji stosowanych w robotach.
      Agha i Morrell mówią, że jaskinie lawowe ich zaskoczyły. Okazały się znacznie trudniejsze niż sądzili. Stromizny stanowią duże wyzwanie dla robotów. Powierzchnie tych jaskiń są niezwykle przyczepne. To akurat korzystne dla robotów wyposażonych w nogi, jednak roboty na kołach miały tam poważne problemy. Przed urządzeniami stoją tam zupełnie inne wyzwania. Zamiast rozpoznawania schodów i urządzeń, co było im potrzebne w tunelach budowanych przez człowieka, muszą radzić sobie np. z nagłymi spadkami czy obniżającym się terenem.
      Miejskie tunele są dobrze rozplanowane, nachylone pod wygodnymi kątami, z odpowiednimi zakrętami, prostymi korytarzami i przejściami. Można się tam spodziewać równego podłoża, wiele rzeczy można z góry zaplanować. W przypadku jaskiń wielu rzeczy nie można przewidzieć.
      Celem SubT Challenge oraz zespołu CoSTAR jest stworzenie w pełni autonomicznych robotów do eksploracji jaskiń. I cel ten jest coraz bliżej.
      Byliśmy bardzo szczęśliwi, gdy podczas jednego z naszych testów robot Spot [Boston Dynamics – red.] w pełni autonomicznie przebył całą jaskinię. Pełna autonomia to cel, nad którym pracujemy zarówno na potrzeby NASA jak i zawodów, więc pokazanie, że to możliwe jest wielkim sukcesem, mówi Morrell. Innym wielkim sukcesem było bardzo łatwe przełożenie wirtualnego środowiska, takiego jak systemy planowania, systemy operacyjne i autonomiczne na rzeczywiste zachowanie się robota, dodaje. Jak jednak przyznaje, zanotowano również porażki. Roboty wyposażone w koła miały problemy w jaskiniach lawowych. Dochodziło do zużycia podzespołów oraz poważnych awarii sprzętu. Ze względu na epidemię trudno było sobie z nimi poradzić w miejscu testów, stwierdza ekspert.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwykle drobne struktury konieczne do prezentowania barw rzadko zachowują się w zapisie kopalnym. Z tego powodu rekonstrukcje opierają się na wyobrażeniach artystów. Ostatnio jednak zespół z Instytutu Geologii i Paleontologii Chińskiej Akademii Nauk ujawnił sekrety prawdziwego ubarwienia 35 okazów owadów z birmańskich bursztynów sprzed ok. 99 mln lat. Feeria barw nie tylko cieszy oko, ale i pozwala oszacować zachowanie i ekologię owadów z odległej geologicznej przeszłości.
      Artykuł Chińczyków ukazał się w piśmie Proceedings of the Royal Society B. Bursztyny z inkluzjami pochodzą z kopalni na północy Mjanmy. Zachowały się w nich owady należące do 3 rzędów - błonkówek (Hymenoptera), chrząszczy (Coleoptera) i muchówek (Diptera) - i co najmniej 7 rodzin.
      Barwy zachowane w bursztynowych skamieniałościach to kolory strukturalne, związane z mikroskopijnymi strukturami na powierzchni zwierzęcia. Rozpraszają one światło o konkretnej długości fali, dając bardzo intensywne barwy. Ten mechanizm odpowiada za wiele kolorów, znanych nam z codziennego życia - tłumaczy prof. Pan Yanhong, specjalista od rekonstrukcji paleokoloru.
      U wielu owadów zaobserwowano ubarwienie całego ciała, u innych kolory występowały tylko na niektórych częściach ciała.
      Najbardziej unikatowe ubarwienie zaobserwowano u 29 okazów należących do złotolitek (Chrysididae) i bleskotek (Chalcidoidea); zazwyczaj są one niewielkie, co sprawia, że idealnie nadają się do zachowania w bursztynie. Tak jak u współczesnych krewnych, na głowie, tułowiu, odwłoku i odnóżach złotolitek z bursztynu widać metaliczną zieleń z domieszką niebieskiego, zieleń, a także żółtawą zieleń i barwę niebieskofioletową.
      Naukowcy opisali też niebieskie, fioletowe, metalicznie zielone i zielononiebieskie okazy (5) chrząszczy, a także jednego przedstawiciela rodziny lwinkowatych (Stratiomyidae); ten ostatni również połyskiwał metaliczną ciemną zielenią.
      Widzieliśmy tysiące bursztynowych skamieniałości, ale zachowanie barw w tych egzemplarzach jest wyjątkowe - podkreśla Yanhong.
      By zrozumieć, czemu kolor zachował się w pewnych skamieniałościach z bursztynu, a w innych nie, naukowcy przecięli za pomocą noża diamentowego oskórek 2 barwnych owadów i porównali go ze zwykłą (brązowo-czarną) kutykulą.
      Za pomocą mikroskopii elektronowej wykazano, że barwne okazy miały w szkielecie zewnętrznym dobrze zachowane struktury rozpraszające światło (nie stwierdzono obecności np. trójwymiarowych kryształów fotonicznych, co oznacza, że kolor musiał być skutkiem zidentyfikowanych warstw w epikutykuli). Niezmieniona nanostruktura sugeruje, że to oryginalne barwy, które występowały w kredzie. Tam, gdzie kolor się nie zachował, struktury oskórka były uszkodzone, co może wyjaśniać ich brązowo-czarny wygląd. Jak zademonstrowali Chińczycy, w jednych częściach inkluzji warstwy epikutykuli mogą się zachować dobrze, a w innych nie.
      Czego możemy się dowiedzieć na podstawie ubarwienia kredowych owadów? Współczesne złotolitki są pasożytami gniazdowymi (samice złotolitek składają jaja do gniazd pszczół dziko żyjących, grzebaczy czy os). Ponieważ wykazano, że kolory strukturalne mogą służyć jako kamuflaż, możliwe, że barwa kredowych złotolitek pozwalała uniknąć wykrycia. W tym momencie nie możemy jednak wykluczyć, że kolory odgrywały rolę inną niż kamuflaż, np. były wykorzystywane w termoregulacji - podsumowuje dr Chenyang Cai.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Rutgers University stworzyli kierowanego USG robota do pobierania krwi, który radził sobie z tym zadaniem tak samo dobrze, a nawet lepiej niż ludzie. Odsetek skutecznych procedur wyliczony dla 31 pacjentów wynosił 87%. Dla 25 osób z łatwo dostępnymi żyłami współczynnik powodzenia sięgał zaś aż 97%.
      W urządzeniu znajduje się analizator hematologiczny z wbudowaną wirówką. Może ono być wykorzystywane przy łóżkach pacjentów, a także w karetkach czy gabinetach lekarskich.
      Wenopunkcja, czyli nakłuwanie żyły, by wprowadzić igłę bądź cewnik, to częsta procedura medyczna. W samych Stanach rocznie przeprowadza się ją ponad 1,4 mld razy. Wcześniejsze badania wykazały, że nie udaje się to u 27% pacjentów z niewidocznymi żyłami, 40% osób bez żył wyczuwalnych palpacyjnie i u 60% wyniszczonych chorych.
      Powtarzające się niepowodzenia związane z wkłuciem pod kroplówkę zwiększają ryzyko zakażeń czy zakrzepicy. Czas poświęcany na przeprowadzenie procedury się wydłuża, rosną koszty i liczba zaangażowanych w to osób.
      Takie urządzenie jak nasze może pomóc pracownikom służby zdrowia szybko, skutecznie i bezpiecznie pozyskać próbki, zapobiegając w ten sposób niepotrzebnym komplikacjom i bólowi towarzyszącemu kolejnym próbom wprowadzenia igły - podkreśla doktorant Josh Leipheimer.
      W przyszłości urządzenie może być wykorzystywane w takich procedurach, jak cewnikowanie dożylne, dializowanie czy wprowadzanie kaniuli tętniczej.
      Kolejnym etapem prac ma być udoskonalenie urządzenia, tak by zwiększyć odsetek udanych procedur u pacjentów z trudno dostępnymi żyłami. Jak podkreślają Amerykanie, dane uzyskane w czasie tego studium zostaną wykorzystane do usprawnienia sztucznej inteligencji w robocie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Robot z piórami gołębia to najnowsze dzieło naukowców z Uniwersytetu Stanforda. Korzysta ono z dodatkowego elementu, ułatwiającego ptakom latanie – możliwości manipulowania rozstawem piór i kształtem skrzydeł.
      David Lentink ze Stanforda przyglądał się sposobowi pracy skrzydeł, poruszając skrzydłami martwego gołębia. Zauważył, że najważniejszy dla zmiany kształtu skrzydeł są kąty poruszania się dwóch stawów: palca i nadgarstka. To dzięki ich zmianie sztywne pióra zmieniają kształt tak, że zmienia się cały układ skrzydeł, co znakomicie pomaga w kontroli lotu.
      Korzystając z tych doświadczeń Lentink wraz z zespołem zbudowali robota, którego wyposażyli w prawdziwe pióra gołębia.
      Robot to urządzenie badawcze. Dzięki niemu naukowcy z USA mogą prowadzić eksperymenty bez udziału zwierząt. Zresztą wielu testów i tak nie udało by się przeprowadzić wykorzystując zwierzęta. Na przykład uczeni zastanawiali się, czy gołąb może skręcać poruszając palcem tylko przy jednym skrzydle.
      Problem w tym, że nie wiem, jak wytresować ptaka, by poruszył tylko jednym palcem, a jestem bardzo dobry w tresurze ptaków, mówi Lentink, inżynier i biolog z Uniwersytetu Stanforda. Robotyczne skrzydła rozwiązują ten problem. Testy wykazały, że zgięcie tylko jednego z palców pozwala robotowi na wykonanie zakrętu, a to wskazuje, że ptaki również mogą tak robić.
      Uczeni przeprowadzili też próby chcąc się dowiedzieć, jak ptaki zapobiegają powstaniu zbyt dużych przerw pomiędzy rozłożonymi piórami. Pocierając jedno pióro o drugie zauważyli, że początkowo łatwo się one z siebie ześlizgują, by później się sczepić. Badania mikroskopowe wykazały, że na krawędziach piór znajdują się niewielkie haczyki zapobiegające ich zbytniemu rozłożeniu. Gdy pióra znowu się do siebie zbliżają, haczyki rozczepiają się. W tym tkwi ich tajemnica. Mają kierunkowe rzepy, które utrzymują pióra razem, mówi Lentink.
      Uczeni, aby potwierdzić swoje spostrzeżenia, odwrócili pióra i tak skonstruowane skrzydło umieścili w tunelu aerodynamicznym. Pęd powietrza utworzył takie przerwy między piórami, że wydajność skrzydła znacznie spadła.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W bursztynie ze środkowej kredy zachował się chrząszcz z pyłkiem na pokrywających go włoskach. Wygląda więc na to, że mutualizm schylikowatych i okrytonasiennych występował już co najmniej 99 mln lat temu. Znaleziska dokonał amerykańsko-chiński zespół, który w tym samym złożu z północnej Mjanmy natrafił na pierwszy przypadek amonita w bursztynie.
      Autorzy raportu z pisma PNAS podkreślają, że odkrycie przesuwa najstarszy udokumentowany przypadek zapylania okrytonasiennych przez owady o ok. 50 mln lat. Wcześniejsze najstarsze bezpośrednie dowody wiązały się przedstawicielami prehistorycznego plemienia pszczół Electrapini ze środkowego eocenu z miejscowości Eckfeld i Messel w Niemczech (sprzed, odpowiednio, 48 i 45 mln lat).
      Analizą morfologiczną 62 ziaren pyłku z Mjanmy zajmował się David Dilcher, emerytowany profesor Uniwersytetu Indiany. Wg niego, kształt i struktura pyłku wskazywały, że wyewoluował w taki sposób, by przenosić się w wyniku kontaktu z owadami. Twierdząc tak, Dilcher powoływał się na rozmiar ziaren, ich "ornamentację" oraz zdolność zbijania się w grudki.
      Pyłek przedstawiciela dwuliściennych nie był wcale łatwy do wykrycia. Udało się to dopiero za pomocą mikroskopu konfokalnego.
      Chrząszcz znajdujący się w bursztynie to nowy gatunek. Naukowcy nadali mu łacińską nazwę Angimordella burmitina. Jego zapylającą rolę potwierdzono, opierając się na kilku fizycznych cechach, w tym na budowie aparatu gębowego czy na pokroju ciała. Ujawniono je za pomocą mikrotomografii komputerowej.
      Wiek nowej skamieniałości określono, bazując na wieku innych znanych fosyliów z tej samej lokalizacji.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...